Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.404
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 178(5): 1205-1221.e17, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31442408

RESUMEN

A hallmark feature of inflammation is the orchestrated recruitment of neutrophils from the bloodstream into inflamed tissue. Although selectins and integrins mediate recruitment in many tissues, they have a minimal role in the lungs and liver. Exploiting an unbiased in vivo functional screen, we identified a lung and liver homing peptide that functionally abrogates neutrophil recruitment to these organs. Using biochemical, genetic, and confocal intravital imaging approaches, we identified dipeptidase-1 (DPEP1) as the target and established its role as a physical adhesion receptor for neutrophil sequestration independent of its enzymatic activity. Importantly, genetic ablation or functional peptide blocking of DPEP1 significantly reduced neutrophil recruitment to the lungs and liver and provided improved survival in models of endotoxemia. Our data establish DPEP1 as a major adhesion receptor on the lung and liver endothelium and identify a therapeutic target for neutrophil-driven inflammatory diseases of the lungs.


Asunto(s)
Dipeptidasas/metabolismo , Neutrófilos/fisiología , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Animales , Cilastatina/farmacología , Cilastatina/uso terapéutico , Dipeptidasas/antagonistas & inhibidores , Dipeptidasas/genética , Modelos Animales de Enfermedad , Endotoxemia/mortalidad , Endotoxemia/patología , Endotoxemia/prevención & control , Proteínas Ligadas a GPI/antagonistas & inhibidores , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Humanos , Lipopolisacáridos/farmacología , Hígado/efectos de los fármacos , Hígado/inmunología , Hígado/metabolismo , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones SCID , Infiltración Neutrófila/efectos de los fármacos , Péptidos/síntesis química , Péptidos/química , Péptidos/farmacología , Tasa de Supervivencia
2.
Nature ; 607(7918): 387-392, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35732733

RESUMEN

The α-helix is pre-eminent in structural biology1 and widely exploited in protein folding2, design3 and engineering4. Although other helical peptide conformations do exist near to the α-helical region of conformational space-namely, 310-helices and π-helices5-these occur much less frequently in protein structures. Less favourable internal energies and reduced tendencies to pack into higher-order structures mean that 310-helices rarely exceed six residues in length in natural proteins, and that they tend not to form normal supersecondary, tertiary or quaternary interactions. Here we show that despite their absence in nature, synthetic peptide assemblies can be built from 310-helices. We report the rational design, solution-phase characterization and an X-ray crystal structure for water-soluble bundles of 310-helices with consolidated hydrophobic cores. The design uses six-residue repeats informed by analysing 310-helical conformations in known protein structures, and incorporates α-aminoisobutyric acid residues. Design iterations reveal a tipping point between α-helical and 310-helical folding, and identify features required for stabilizing assemblies of 310-helices. This work provides principles and rules to open opportunities for designing into this hitherto unexplored region of protein-structure space.


Asunto(s)
Péptidos , Estructura Secundaria de Proteína , Cristalografía por Rayos X , Diseño de Fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Péptidos/síntesis química , Péptidos/química , Pliegue de Proteína , Estabilidad Proteica
3.
Nature ; 593(7857): 61-66, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953410

RESUMEN

In only a few decades, lithium-ion batteries have revolutionized technologies, enabling the proliferation of portable devices and electric vehicles1, with substantial benefits for society. However, the rapid growth in technology has highlighted the ethical and environmental challenges of mining lithium, cobalt and other mineral ore resources, and the issues associated with the safe usage and non-hazardous disposal of batteries2. Only a small fraction of lithium-ion batteries are recycled, further exacerbating global material supply of strategic elements3-5. A potential alternative is to use organic-based redox-active materials6-8 to develop rechargeable batteries that originate from ethically sourced, sustainable materials and enable on-demand deconstruction and reconstruction. Making such batteries is challenging because the active materials must be stable during operation but degradable at end of life. Further, the degradation products should be either environmentally benign or recyclable for reconstruction into a new battery. Here we demonstrate a metal-free, polypeptide-based battery, in which viologens and nitroxide radicals are incorporated as redox-active groups along polypeptide backbones to function as anode and cathode materials, respectively. These redox-active polypeptides perform as active materials that are stable during battery operation and subsequently degrade on demand in acidic conditions to generate amino acids, other building blocks and degradation products. Such a polypeptide-based battery is a first step to addressing the need for alternative chemistries for green and sustainable batteries in a future circular economy.


Asunto(s)
Suministros de Energía Eléctrica , Electroquímica , Péptidos/química , Animales , Bovinos , Línea Celular , Supervivencia Celular , Óxidos N-Cíclicos/química , Ratones , Osteoblastos/citología , Oxidación-Reducción , Péptidos/síntesis química , Desarrollo Sostenible , Viológenos/química
4.
Acc Chem Res ; 57(9): 1287-1297, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38626119

RESUMEN

The growing list of physiologically important protein-protein interactions (PPIs) has amplified the need for compounds to target topologically complex biomolecular surfaces. In contrast to small molecules, peptide and protein mimics can exhibit three-dimensional shape complementarity across a large area and thus have the potential to significantly expand the "druggable" proteome. Strategies to stabilize canonical protein secondary structures without sacrificing side-chain content are particularly useful in the design of peptide-based chemical probes and therapeutics.Substitution of the backbone amide in peptides represents a subtle chemical modification with profound effects on conformation and stability. Studies focused on N-alkylation have already led to broad-ranging applications in peptidomimetic design. Inspired by nonribosomal peptide natural products harboring amide N-oxidations, we envisioned that main-chain hydrazide and hydroxamate bonds would impose distinct conformational preferences and offer unique opportunities for backbone diversification. This Account describes our exploration of peptide N-amination as a strategy for stabilizing canonical protein folds and for the structure-based design of soluble amyloid mimics.We developed a general synthetic protocol to access N-amino peptides (NAPs) on solid support. In an effort to stabilize ß-strand conformation, we designed stitched peptidomimetics featuring covalent tethering of the backbone N-amino substituent to the preceding residue side chain. Using a combination of NMR, X-ray crystallography, and molecular dynamics simulations, we discovered that backbone N-amination alone could significantly stabilize ß-hairpin conformation in multiple models of folding. Our studies revealed that the amide NH2 substituent in NAPs participates in cooperative noncovalent interactions that promote ß-sheet secondary structure. In contrast to Cα-substituted α-hydrazino acids, we found that N-aminoglycine and its N'-alkylated derivatives instead stabilize polyproline II (PPII) conformation. The reactivity of hydrazides also allows for late-stage peptide macrocyclization, affording novel covalent surrogates of side-chain-backbone H-bonds.The pronounced ß-sheet propensity of Cα-substituted α-hydrazino acids prompted us to target amyloidogenic proteins using NAP-based ß-strand mimics. Backbone N-amination was found to render aggregation-prone lead sequences soluble and resistant to proteolysis. Inhibitors of Aß and tau identified through N-amino scanning blocked protein aggregation and the formation of mature fibrils in vitro. We further identified NAP-based single-strand and cross-ß tau mimics capable of inhibiting the prion-like cellular seeding activity of recombinant and patient-derived tau fibrils.Our studies establish backbone N-amination as a valuable addition to the peptido- and proteomimetic tool kit. α-Hydrazino acids show particular promise as minimalist ß-strand mimics that retain side-chain information. Late-stage derivatization of hydrazides also provides facile entry into libraries of backbone-edited peptides. We anticipate that NAPs will thus find applications in the development of optimally constrained folds and modulators of PPIs.


Asunto(s)
Péptidos , Alquilación , Péptidos/química , Péptidos/síntesis química
5.
Acc Chem Res ; 57(16): 2234-2244, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39115809

RESUMEN

ConspectusThe origin of the single chirality of the chemical building blocks of life remains an intriguing topic of research, even after decades of experimental and theoretical work proposing processes that may break symmetry and induce chiral amplification, a term that may be defined as the enhancement of enantiomeric excess starting from prochiral substrates or from a racemic mixture or a small imbalance between enantiomers. Studies aimed at understanding prebiotically plausible pathways to these molecules have often neglected the issue of chirality, with a focus on the stereochemical direction of these reactions generally being pursued after reaction discovery. Our work has explored how the stereochemical outcome for the synthesis of amino acids and sugars might be guided to rationalize the origin of biological homochirality. The mechanistic interconnection between enantioenrichment in these two groups of molecules provides insights concerning the handedness extant in modern biology. In five separate examples involving the synthesis of life's building blocks, including sugars, RNA precursors, amino acids, and peptides, kinetic resolution emerges as a key protocol for enantioenrichment from racemic molecules directed by chiral source molecules. Several of these examples involve means not only for chiral amplification but also symmetry breaking and chirality transfer across a range of racemic monomer molecules. Several important implications emerge from these studies: one, kinetic resolution of the primordial chiral sugar, glyceraldehyde, plays a key role in a number of different prebiotically plausible reactions; two, the emergence of homochirality in sugars and amino acids is inherently intertwined, with clear synergy between the biological hand of each molecule class; three, the origin story for the homochirality of enzymes and modern metabolism points toward kinetic resolution of racemic amino acids in networks that later evolved to include sophisticated and complete catalytic and co-catalytic cycles; four, a preference for heterochiral ligation forming product molecules that cannot lead to biologically competent polymers can in fact be a driving force for a route to homochiral polymer chains; and five, enantioenrichment in complex mixtures need not be addressed one compound at a time, because kinetic resolution induces symmetry breaking and chirality transfer that may lead to general protocols rather than specific cases tailored to each individual molecule. Such chirality transfer mechanisms perhaps presage strategies utilized in modern biology.Our latest work extends the study of monomer enantioenrichment to the ligation of these molecules into the extended homochiral chains leading to the complex polymers of modern biology. A central theme in all of these reactions is the key role that kinetic resolution of a racemic mixture of amino acids or sugars plays in enabling enantioenrichment under prebiotically plausible conditions. This work has uncovered important trends in symmetry breaking, chirality transfer, and chiral amplification. Kinetic resolution of racemic mixtures emerges as a general solution for chiral amplification in prebiotic chemistry, leading to the single chirality of complex biological molecules and genetic polymers.


Asunto(s)
Aminoácidos , Estereoisomerismo , Cinética , Aminoácidos/química , Péptidos/química , Péptidos/síntesis química , Prebióticos , Origen de la Vida , Azúcares/química , ARN/química
6.
Nature ; 571(7766): 546-549, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31292542

RESUMEN

Amide bond formation is one of the most important reactions in both chemistry and biology1-4, but there is currently no chemical method of achieving α-peptide ligation in water that tolerates all of the 20 proteinogenic amino acids at the peptide ligation site. The universal genetic code establishes that the biological role of peptides predates life's last universal common ancestor and that peptides played an essential part in the origins of life5-9. The essential role of sulfur in the citric acid cycle, non-ribosomal peptide synthesis and polyketide biosynthesis point towards thioester-dependent peptide ligations preceding RNA-dependent protein synthesis during the evolution of life5,9-13. However, a robust mechanism for aminoacyl thioester formation has not been demonstrated13. Here we report a chemoselective, high-yielding α-aminonitrile ligation that exploits only prebiotically plausible molecules-hydrogen sulfide, thioacetate12,14 and ferricyanide12,14-17 or cyanoacetylene8,14-to yield α-peptides in water. The ligation is extremely selective for α-aminonitrile coupling and tolerates all of the 20 proteinogenic amino acid residues. Two essential features enable peptide ligation in water: the reactivity and pKaH of α-aminonitriles makes them compatible with ligation at neutral pH and N-acylation stabilizes the peptide product and activates the peptide precursor to (biomimetic) N-to-C peptide ligation. Our model unites prebiotic aminonitrile synthesis and biological α-peptides, suggesting that short N-acyl peptide nitriles were plausible substrates during early evolution.


Asunto(s)
Evolución Química , Nitrilos/química , Nitrilos/síntesis química , Origen de la Vida , Péptidos/química , Péptidos/síntesis química , Agua/química , Acetileno/análogos & derivados , Acetileno/química , Dipéptidos/síntesis química , Dipéptidos/química , Ferricianuros/química , Sulfuro de Hidrógeno/química , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Compuestos de Sulfhidrilo/química , Sulfuros/química
7.
J Biol Chem ; 299(9): 105066, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37468103

RESUMEN

Among the rare venomous mammals, the short-tailed shrew Blarina brevicauda has been suggested to produce potent neurotoxins in its saliva to effectively capture prey. Several kallikrein-like lethal proteases have been identified, but the active substances of B. brevicauda remained unclear. Here, we report Blarina paralytic peptides (BPPs) 1 and 2 isolated from its submaxillary glands. Synthetic BPP2 showed mealworm paralysis and a hyperpolarization shift (-11 mV) of a human T-type Ca2+ channel (hCav3.2) activation. The amino acid sequences of BPPs were similar to those of synenkephalins, which are precursors of brain opioid peptide hormones that are highly conserved among mammals. However, BPPs rather resembled centipede neurotoxic peptides SLPTXs in terms of disulfide bond connectivity and stereostructure. Our results suggested that the neurotoxin BPPs were the result of convergent evolution as homologs of nontoxic endogenous peptides that are widely conserved in mammals. This finding is of great interest from the viewpoint of the chemical evolution of vertebrate venoms.


Asunto(s)
Canales de Calcio Tipo T , Neurotoxinas , Péptidos , Musarañas , Animales , Humanos , Secuencia de Aminoácidos , Neurotoxinas/química , Neurotoxinas/genética , Neurotoxinas/farmacología , Péptidos/síntesis química , Péptidos/genética , Péptidos/aislamiento & purificación , Péptidos/farmacología , Canales de Calcio Tipo T/efectos de los fármacos , Evolución Molecular , Musarañas/clasificación , Musarañas/genética , Musarañas/metabolismo , Tenebrio/efectos de los fármacos , Células HEK293 , Electrofisiología
8.
J Am Chem Soc ; 146(25): 17261-17269, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38759637

RESUMEN

Many peptidic natural products, such as lasso peptides, cyclic peptides, and cyclotides, are conformationally constrained and show biological stability, making them attractive scaffolds for drug development. Although many peptides can be synthesized and modified through chemical methods, knot-like lasso peptides such as microcin J25 (MccJ25) and their analogues remain elusive. As the chemical space of MccJ25 analogues accessible through purely biological methods is also limited, we proposed a hybrid approach: flow-based chemical synthesis of non-natural precursor peptides, followed by in vitro transformation with recombinant maturation enzymes, to yield a more diverse array of lasso peptides. Herein, we established the rapid, flow-based synthesis of chemically modified MccJ25 precursor peptides (57 amino acids). Heterologous expression of enzymes McjB and McjC was extensively optimized to improve yields and facilitate the synthesis of multiple analogues of MccJ25, including the incorporation of non-canonical tyrosine and histidine derivatives into the lasso scaffold. Finally, using our chemoenzymatic strategy, we produced a biologically active analogue containing three d-amino acids in the loop region and incorporated backbone N-methylations. Our method provides rapid access to chemically modified lasso peptides that could be used to investigate structure-activity relationships, epitope grafting, and the improvement of therapeutic properties.


Asunto(s)
Péptidos , Péptidos/química , Péptidos/síntesis química , Bacteriocinas
9.
J Am Chem Soc ; 146(35): 24189-24208, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39172171

RESUMEN

Polypeptides have the same or similar backbone structures as proteins and peptides, rendering them as suitable and important biomaterials. Amino acid N-carboxyanhydrides (NCA) ring-opening polymerization has been the most efficient strategy for polypeptide preparation, with continuous advance in the design of initiators, catalysts and reaction conditions. This Perspective first summarizes the recent progress of NCA synthesis and purification. Subsequently, we focus on various initiators for NCA polymerization, catalysts for accelerating polymerization or enhancing the controllability of polymerization, and recent advances in the reaction approach of NCA polymerization. Finally, we discuss future research directions and open challenges.


Asunto(s)
Anhídridos , Péptidos , Polimerizacion , Péptidos/química , Péptidos/síntesis química , Anhídridos/química , Catálisis , Estructura Molecular , Aminoácidos/química , Aminoácidos/síntesis química
10.
J Am Chem Soc ; 146(17): 11648-11656, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38629317

RESUMEN

Imidazolones represent an important class of heterocycles present in a wide range of pharmaceuticals, metabolites, and bioactive natural products and serve as the active chromophore in green fluorescent protein. Recently, imidazolones have received attention for their ability to act as a nonaromatic amide bond bioisotere which improves pharmacological properties. Herein, we present a tandem amidine installation and cyclization with an adjacent ester to yield (4H)-imidazolone products. Using amino acid building blocks, we can access the first examples of α-chiral imidazolones that have been previously inaccessible. Additionally, our method is amenable to on-resin installation which can be seamlessly integrated into existing solid-phase peptide synthesis protocols. Finally, we show that peptide imidazolones are potent cis-amide bond surrogates that preorganize linear peptides for head-to-tail macrocyclization. This work represents the first general approach to the backbone and side-chain insertion of imidazolone bioisosteres at various positions in linear and cyclic peptides.


Asunto(s)
Amidas , Imidazoles , Péptidos , Imidazoles/química , Imidazoles/síntesis química , Péptidos/química , Péptidos/síntesis química , Amidas/química , Ciclización , Estereoisomerismo , Estructura Molecular
11.
J Am Chem Soc ; 146(35): 24348-24357, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39182188

RESUMEN

Interactions between proteins and α-helical peptides have been the focus of drug discovery campaigns. However, the large interfaces formed between multiple turns of an α-helix and a binding protein represent a significant challenge to inhibitor discovery. Modified peptides featuring helix-stabilizing macrocycles have shown promise as inhibitors of these interactions. Here, we tested the ability of N-terminal to side-chain thioether-cyclized peptides to inhibit the α-helix binding protein Mcl-1, by screening a trillion-scale library. The enriched peptides were lariats featuring a small, four-amino-acid N-terminal macrocycle followed by a short linear sequence that resembled the natural α-helical Mcl-1 ligands. These "Heliats" (helical lariats) bound Mcl-1 with tens of nM affinity, and inhibited the interaction between Mcl-1 and a natural peptide ligand. Macrocyclization was found to stabilize α-helical structures and significantly contribute to affinity and potency. Yet, the 2nd and 3rd positions within the macrocycle were permissible to sequence variation, so that a minimal macrocyclic motif, of an N-acetylated d-phenylalanine at the 1st position thioether connected to a cysteine at the 4th, could be grafted into a range of peptides and stabilize helical conformations. We found that d-stereochemistry is more helix-stabilizing than l- at the 1st position in the motif, as the d-amino acid can utilize polyproline II torsional angles that allow for more optimal intrachain hydrogen bonding. This mixed stereochemistry macrocyclic N-cap is synthetically accessible, requiring only minor modifications to standard solid-phase peptide synthesis, and its compatibility with peptide screening can provide ready access to helix-focused peptide libraries for de novo inhibitor discovery.


Asunto(s)
Compuestos Macrocíclicos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Péptidos , Estereoisomerismo , Péptidos/química , Péptidos/síntesis química , Péptidos/farmacología , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/antagonistas & inhibidores , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/química , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/farmacología , Humanos , Conformación Proteica en Hélice alfa , Modelos Moleculares
12.
J Am Chem Soc ; 146(23): 15941-15954, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38832917

RESUMEN

The pathogen Staphylococcus epidermidis uses a chemical signaling process, i.e., quorum sensing (QS), to form robust biofilms and cause human infection. Many questions remain about QS in S. epidermidis, as it uses this intercellular communication pathway to both negatively and positively regulate virulence traits. Herein, we report synthetic multigroup agonists and antagonists of the S. epidermidis accessory gene regulator (agr) QS system capable of potent superactivation and complete inhibition, respectively. These macrocyclic peptides maintain full efficacy across the three major agr specificity groups, and their activity can be "mode-switched" from agonist to antagonist via subtle residue-specific structural changes. We describe the design and synthesis of these non-native peptides and demonstrate that they can appreciably decrease biofilm formation on abiotic surfaces, underscoring the potential for agr agonism as a route to block S. epidermidis virulence. Additionally, we show that both the S. epidermidis agonists and antagonists are active in S. aureus, another common pathogen with a related agr system, yet only as antagonists. This result not only revealed one of the most potent agr inhibitors known in S. aureus but also highlighted differences in the mechanisms of agr agonism and antagonism between these related bacteria. Finally, our investigations reveal unexpected inhibitory behavior for certain S. epidermidis agr agonists at sub-activating concentrations, an observation that can be leveraged for the design of future probes with enhanced potencies. Together, these peptides provide a powerful tool set to interrogate the role of QS in S. epidermidis infections and in Staphylococcal pathogenicity in general.


Asunto(s)
Biopelículas , Percepción de Quorum , Staphylococcus epidermidis , Percepción de Quorum/efectos de los fármacos , Biopelículas/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus epidermidis/fisiología , Péptidos/farmacología , Péptidos/química , Péptidos/síntesis química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química
13.
Chembiochem ; 25(10): e202400150, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38554039

RESUMEN

1,2,3-triazole is an important building block in organic chemistry. It is now well known as a bioisostere for various functions, such as the amide or the ester bond, positioning it as a key pharmacophore in medicinal chemistry and it has found applications in various fields including life sciences. Attention was first focused on the synthesis of 1,4-disubstituted 1,2,3-triazole molecules however 1,4,5-trisubstituted 1,2,3-triazoles have now emerged as valuable molecules due to the possibility to expand the structural modularity. In the last decade, methods mainly derived from the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction have been developed to access halo-triazole compounds and have been applied to nucleosides, carbohydrates, peptides and proteins. In addition, late-stage modification of halo-triazole derivatives by metal-mediated cross-coupling or halo-exchange reactions offer the possibility to access highly functionalized molecules that can be used as tools for chemical biology. This review summarizes the synthesis, the functionalization, and the applications of 1,4,5-trisubstituted halo-1,2,3-triazoles in biologically relevant molecules.


Asunto(s)
Reacción de Cicloadición , Triazoles , Triazoles/química , Triazoles/síntesis química , Cobre/química , Catálisis , Azidas/química , Alquinos/química , Alquinos/síntesis química , Proteínas/química , Péptidos/química , Péptidos/síntesis química , Química Clic , Nucleósidos/química , Nucleósidos/síntesis química , Carbohidratos/química , Carbohidratos/síntesis química
14.
Bioconjug Chem ; 35(8): 1190-1199, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39042943

RESUMEN

Interleukin-6 (IL-6), a multifunctional cytokine, is an attractive therapeutic target for immunological and inflammatory diseases. We investigated the chemical synthesis of IL-6 and its enantiomer (d-IL-6) using a sequential N-to-C native chemical ligation strategy from six peptide segments. Solubilizing Trt-K10 tags improved the intermediate solubility and served as protecting groups during the metal-free desulfurization to facilitate the synthesis of full-length IL-6 protein. Synthetic l-IL-6 and recombinant IL-6 exhibited nearly identical structural and binding properties. The symmetrical binding property of d-IL-6 was also demonstrated by functional analysis using IL-6-binding peptides. The resulting functional d-IL-6 was employed to screen a phage-displayed antibody fragment library, leading to the identification of several d-IL-6-binding single-domain antibodies. This work will contribute to the development of novel, potent IL-6 inhibitors without the adverse effects of undesired immune activation.


Asunto(s)
Interleucina-6 , Interleucina-6/antagonistas & inhibidores , Interleucina-6/inmunología , Biblioteca de Péptidos , Humanos , Estereoisomerismo , Péptidos/química , Péptidos/síntesis química , Proteínas Recombinantes/química , Modelos Moleculares , Secuencia de Aminoácidos , Solubilidad
15.
Chemistry ; 30(39): e202401069, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38709711

RESUMEN

Peptide-oligonucleotide conjugates (POCs) are covalent architectures composed of a DNA or RNA molecules linked to a peptide. These constructs have found widespread applications ranging from hybrid nanomaterials to gene-targeted therapies. Considering the important role of POCs, a new catalytic approach for their preparation is reported here, that could be applied either on solid support in anhydrous media, or post-synthetically in aqueous buffer. Single amino acids, peptides and cell penetrating peptides (CPPs) were conjugated to various oligo(ribo)nucleotides with high conversions and good isolated yields. The applicability of the method was demonstrated on more than 35 examples including an analogue of a commercial therapeutic oligonucleotide. Other conjugation partners, such as deoxycholic acid and biotin were also successfully conjugated to oligonucleotides. To highlight the potential of this catalytic approach, these conditions have been applied to iterative processes, which is of high interest for the development of DNA-Encoded Libraries.


Asunto(s)
Oligonucleótidos , Péptidos , Catálisis , Oligonucleótidos/química , Oligonucleótidos/síntesis química , Péptidos/química , Péptidos/síntesis química , Péptidos de Penetración Celular/química , Agua/química , ADN/química , Aminoácidos/química , Soluciones
16.
Chemistry ; 30(33): e202400933, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609334

RESUMEN

A relaxin-like gonad-stimulating peptide (RGP), Aso-RGP, featuring six cysteine residues, was identified in the Crown-of-Thorns Starfish (COTS, Acanthaster cf. solaris) and initially produced through recombinant yeast expression. This method yielded a single-chain peptide with an uncleaved C-peptide (His Tag) and suboptimal purity. Our objective was to chemically synthesize Aso-RGP in its mature form, comprising two chains (A and B) and three disulfide bridges, omitting the C-peptide. Furthermore, we aimed to synthesize a newly identified relaxin-like peptide, Aso-RLP2, from COTS, which had not been previously synthesized. This paper reports the first total chemical synthesis of Aso-RGP and Aso-RLP2. Aso-RGP synthesis proceeded without major issues, whereas the A-chain of Aso-RLP2, in its reduced and unfolded state with two free thiols, presented considerable challenges. These were initially marked by "messy" RP-HPLC profiles, typically indicative of synthesis failure. Surprisingly, oxidizing the A-chain significantly improved the RP-HPLC profile, revealing the main issue was not synthesis failure but the peptide's aggregation tendency, which initially obscured analysis. This discovery highlights the critical need to account for aggregation in peptide synthesis and analysis. Ultimately, our efforts led to the successful synthesis of both peptides with purities exceeding 95 %.


Asunto(s)
Disulfuros , Péptidos , Estrellas de Mar , Estrellas de Mar/química , Disulfuros/química , Péptidos/química , Péptidos/síntesis química , Animales , Cromatografía Líquida de Alta Presión , Secuencia de Aminoácidos , Cisteína/química , Oxidación-Reducción
17.
Chemistry ; 30(38): e202401716, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38708622

RESUMEN

Macrocyclic peptides containing a thiazole or thiazoline in the backbone are considered privileged structures in both natural compounds and drug discovery, owing to their enhanced bioactivity, stability, and permeability. Here, we present the biocompatible synthesis of macrocyclic peptides from N-terminal cysteine and C-terminal nitrile. While the N-terminal cysteine is incorporated during solid-phase peptide synthesis, the C-terminal nitrile is introduced during cleavage with aminoacetonitrile, utilizing a cleavable benzotriazole linker. This method directly yields the fully functionalized linear peptide precursor. The biocompatible cyclization reaction occurs in buffer at physiological pH and room temperature. The resulting thiazoline heterocycle remains stable in buffer but hydrolyzes under acidic conditions. While such hydrolysis enables access to macrocyclic peptides with a complete amide backbone, mild oxidation of the thiazoline leads to the stable thiazole macrocyclic peptide. While conventional oxidation strategies involve metals, we developed a protocol simply relying on alkaline salt and air. Therefore, we offer a rapid and metal-free pathway to macrocyclic thiazole peptides, featuring a biocompatible key cyclization step.


Asunto(s)
Tiazoles , Ciclización , Tiazoles/química , Péptidos Cíclicos/química , Péptidos Cíclicos/síntesis química , Oxidación-Reducción , Péptidos/química , Péptidos/síntesis química , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/síntesis química , Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Técnicas de Síntesis en Fase Sólida , Cisteína/química , Triazoles/química , Triazoles/síntesis química , Hidrólisis , Concentración de Iones de Hidrógeno
18.
Biomacromolecules ; 25(5): 3122-3130, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38696355

RESUMEN

Synthesis of polysaccharide-b-polypeptide block copolymers represents an attractive goal because of their promising potential in delivery applications. Inspired by recent breakthroughs in N-carboxyanhydride (NCA) ring-opening polymerization (ROP), we present an efficient approach for preparation of a dextran-based macroinitiator and the subsequent synthesis of dextran-b-polypeptides via NCA ROP. This is an original approach to creating and employing a native polysaccharide macroinitiator for block copolymer synthesis. In this strategy, regioselective (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) oxidation of the sole primary alcohol located at the C-6 position of the monosaccharide at the nonreducing end of linear dextran results in a carboxylic acid. This motif is then transformed into a tetraalkylammonium carboxylate, thereby generating the dextran macroinitiator. This macroinitiator initiates a wide range of NCA monomers and produces dextran-b-polypeptides with a degree of polymerization (DP) of the polypeptide up to 70 in a controlled manner (D < 1.3). This strategy offers several distinct advantages, including preservation of the original dextran backbone structure, relatively rapid polymerization, and moisture tolerance. The dextran-b-polypeptides exhibit interesting self-assembly behavior. Their nanostructures have been investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM), and adjustment of the structure of block copolymers allows self-assembly of spherical micelles and worm-like micelles with varied diameters and aspect ratios, revealing a range of diameters from 60 to 160 nm. Moreover, these nanostructures exhibit diverse morphologies, including spherical micelles and worm-like micelles, enabling delivery applications.


Asunto(s)
Dextranos , Péptidos , Polimerizacion , Dextranos/química , Péptidos/química , Péptidos/síntesis química , Polímeros/química , Polímeros/síntesis química , Óxidos N-Cíclicos/química , Anhídridos/química , Polisacáridos/química , Micelas
19.
J Org Chem ; 89(18): 13719-13724, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39257180

RESUMEN

Peptide alkyl thioesters are versatile reagents in various synthetic applications, commonly generated from peptide hydrazides and thiols. However, a notable limitation is the need for a substantial excess of the thiol reagent, restricting the usage to simple thiols. Here, we introduce an adapted procedure that significantly enhances thioester production with just a minimal thiol excess, facilitating the use of advanced thiol nucleophiles.


Asunto(s)
Ésteres , Hidrazinas , Péptidos , Compuestos de Sulfhidrilo , Compuestos de Sulfhidrilo/química , Péptidos/química , Péptidos/síntesis química , Ésteres/química , Hidrazinas/química , Estructura Molecular
20.
J Org Chem ; 89(16): 11261-11271, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39104055

RESUMEN

The negligible cytotoxicity of anion surface-linked dendrons makes glutamic acid-based dendrons a potential candidate for materials and biological applications. Despite the inherent drawbacks of the conventional solution phase synthesis of glutamic acid-based dendrons, there have been no advancements in these protocols. Herein, we demonstrate the first-ever convergent solid phase synthesis of dendrons, up to fourth generation, having glutamic acid branching points produced by preactivation of dicarboxylic acid groups with N-hydroxysuccinimide and simultaneous coupling with amine groups of two growing peptide chains, with excellent yields (30-70%). In addition to the general advantages, such as the easy workup, a final single purification step, and an overall short synthesis duration, the convergent solid phase synthesis allowed us to chemically synthesize glutamic acid branching-based dendrons that cannot be accessed by standard divergent solid phase synthesis. This method has also been validated for its application in synthesizing hard-to-achieve Janus peptide dendrimers in a single stretch on a solid support. Our work corroborates the efficacy of controlled -COOH activation to accomplish an atypical solid phase synthesis of diverse glutamic acid dendrons in a convergent fashion. This is the first example of a Janus peptide dendrimer being synthesized on a solid support, utilizing both convergent and divergent approaches simultaneously.


Asunto(s)
Dendrímeros , Ácido Glutámico , Péptidos , Técnicas de Síntesis en Fase Sólida , Dendrímeros/química , Dendrímeros/síntesis química , Técnicas de Síntesis en Fase Sólida/métodos , Péptidos/química , Péptidos/síntesis química , Ácido Glutámico/química , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA