Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.273
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 182(3): 609-624.e21, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32640190

RESUMEN

Gastrointestinal enterochromaffin cells regulate bone and gut homeostasis via serotonin (5-hydroxytryptamine [5-HT]) production. A recent report suggested that gut microbes regulate 5-HT levels; however, the precise underlying molecular mechanisms are unexplored. Here, we reveal that the cation channel Piezo1 in the gut acts as a sensor of single-stranded RNA (ssRNA) governing 5-HT production. Intestinal epithelium-specific deletion of mouse Piezo1 profoundly disturbed gut peristalsis, impeded experimental colitis, and suppressed serum 5-HT levels. Because of systemic 5-HT deficiency, conditional knockout of Piezo1 increased bone formation. Notably, fecal ssRNA was identified as a natural Piezo1 ligand, and ssRNA-stimulated 5-HT synthesis from the gut was evoked in a MyD88/TRIF-independent manner. Colonic infusion of RNase A suppressed gut motility and increased bone mass. These findings suggest gut ssRNA as a master determinant of systemic 5-HT levels, indicating the ssRNA-Piezo1 axis as a potential prophylactic target for treatment of bone and gut disorders.


Asunto(s)
Huesos/metabolismo , Colon/metabolismo , Motilidad Gastrointestinal/genética , Canales Iónicos/metabolismo , ARN/metabolismo , Serotonina/biosíntesis , Serotonina/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Huesos/citología , Calcio/metabolismo , Colitis/genética , Colitis/metabolismo , Colitis/prevención & control , Colon/fisiología , Heces/química , Femenino , Motilidad Gastrointestinal/fisiología , Células HEK293 , Humanos , Inmunohistoquímica , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Canales Iónicos/genética , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microbiota/efectos de los fármacos , Factor 88 de Diferenciación Mieloide/metabolismo , Osteoclastos/metabolismo , Pirazinas/farmacología , ARN/farmacología , Ribonucleasa Pancreática/administración & dosificación , Serotonina/sangre , Serotonina/deficiencia , Tiadiazoles/farmacología
2.
Annu Rev Biochem ; 87: 1-21, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29925256

RESUMEN

My initial research experience involved studying how bacteria synthesize nucleotide sugars, the donors for the formation of cell wall polysaccharides. During this time, I became aware that mammalian cells also have a surface coat of sugars and was intrigued as to whether these sugars might be arranged in specific sequences that function as information molecules in biologic processes. Thus began a long journey that has taken me from glycan structural analysis and determination of plant lectin-binding preferences to the biosynthesis of Asn-linked oligosaccharides and the mannose 6-phosphate (Man-6-P) lysosomal enzyme targeting pathway. The Man-6-P system represents an early example of a glycan serving as an information molecule in a fundamental cellular function. The remarkable advances in the field of glycobiology since I entered have uncovered scores of additional examples of oligosaccharide-lectin interactions mediating critical biologic processes. It has been a rewarding experience to participate in the efforts that have established a central role for glycans in biology.


Asunto(s)
Glicómica/historia , Proteínas Adaptadoras del Transporte Vesicular/historia , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Manosafosfatos/historia , Manosafosfatos/metabolismo , Redes y Vías Metabólicas , Hidrolasas Diéster Fosfóricas/historia , Hidrolasas Diéster Fosfóricas/metabolismo , Receptor IGF Tipo 2/historia , Receptor IGF Tipo 2/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/historia , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Estados Unidos
3.
Immunity ; 57(7): 1497-1513.e6, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38744293

RESUMEN

RIPK1 is a multi-functional kinase that regulates cell death and inflammation and has been implicated in the pathogenesis of inflammatory diseases. RIPK1 acts in a kinase-dependent and kinase-independent manner to promote or suppress apoptosis and necroptosis, but the underlying mechanisms remain poorly understood. Here, we show that a mutation (R588E) disrupting the RIPK1 death domain (DD) caused perinatal lethality induced by ZBP1-mediated necroptosis. Additionally, these mice developed postnatal inflammatory pathology, which was mediated by necroptosis-independent TNFR1, TRADD, and TRIF signaling, partially requiring RIPK3. Our biochemical mechanistic studies revealed that ZBP1- and TRIF-mediated activation of RIPK3 required RIPK1 kinase activity in wild-type cells but not in Ripk1R588E/R588E cells, suggesting that DD-dependent oligomerization of RIPK1 and its interaction with FADD determine the mechanisms of RIPK3 activation by ZBP1 and TRIF. Collectively, these findings revealed a critical physiological role of DD-dependent RIPK1 signaling that is important for the regulation of tissue homeostasis and inflammation.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular , Inflamación , Necroptosis , Proteínas de Unión al ARN , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Transducción de Señal , Animales , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Ratones , Inflamación/metabolismo , Inflamación/inmunología , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Proteína de Dominio de Muerte Asociada a Fas/genética , Muerte Celular , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Dominios Proteicos , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Apoptosis , Mutación , Proteína de Dominio de Muerte Asociada a Receptor de TNF
4.
Cell ; 174(2): 325-337.e14, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29887380

RESUMEN

Multiple proteins act co-operatively in mammalian clathrin-mediated endocytosis (CME) to generate endocytic vesicles from the plasma membrane. The principles controlling the activation and organization of the actin cytoskeleton during mammalian CME are, however, not fully understood. Here, we show that the protein FCHSD2 is a major activator of actin polymerization during CME. FCHSD2 deletion leads to decreased ligand uptake caused by slowed pit maturation. FCHSD2 is recruited to endocytic pits by the scaffold protein intersectin via an unusual SH3-SH3 interaction. Here, its flat F-BAR domain binds to the planar region of the plasma membrane surrounding the developing pit forming an annulus. When bound to the membrane, FCHSD2 activates actin polymerization by a mechanism that combines oligomerization and recruitment of N-WASP to PI(4,5)P2, thus promoting pit maturation. Our data therefore describe a molecular mechanism for linking spatiotemporally the plasma membrane to a force-generating actin platform guiding endocytic vesicle maturation.


Asunto(s)
Citoesqueleto de Actina/fisiología , Proteínas Portadoras/metabolismo , Clatrina/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Membrana Celular/química , Membrana Celular/metabolismo , Vesículas Cubiertas por Clatrina/metabolismo , Endocitosis , Células HeLa , Humanos , Liposomas/química , Liposomas/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Microscopía Fluorescente , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteína Neuronal del Síndrome de Wiskott-Aldrich/química , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Dominios Homologos src
5.
Cell ; 174(3): 659-671.e14, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-30053425

RESUMEN

The HIV accessory protein Nef counteracts immune defenses by subverting coated vesicle pathways. The 3.7 Å cryo-EM structure of a closed trimer of the clathrin adaptor AP-1, the small GTPase Arf1, HIV-1 Nef, and the cytosolic tail of the restriction factor tetherin suggested a mechanism for inactivating tetherin by Golgi retention. The 4.3 Å structure of a mutant Nef-induced dimer of AP-1 showed how the closed trimer is regulated by the dileucine loop of Nef. HDX-MS and mutational analysis were used to show how cargo dynamics leads to alternative Arf1 trimerization, directing Nef targets to be either retained at the trans-Golgi or sorted to lysosomes. Phosphorylation of the NL4-3 M-Nef was shown to regulate AP-1 trimerization, explaining how O-Nefs lacking this phosphosite counteract tetherin but most M-Nefs do not. These observations show how the higher-order organization of a vesicular coat can be allosterically modulated to direct cargoes to distinct fates.


Asunto(s)
Factor de Transcripción AP-1/ultraestructura , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/ultraestructura , Factor 1 de Ribosilacion-ADP/metabolismo , Factor 1 de Ribosilacion-ADP/ultraestructura , Proteínas Adaptadoras del Transporte Vesicular , Antígeno 2 del Estroma de la Médula Ósea/metabolismo , Antígeno 2 del Estroma de la Médula Ósea/ultraestructura , Clatrina , Aparato de Golgi , Células HEK293 , VIH-1 , Humanos , Transporte de Proteínas/fisiología , Factor de Transcripción AP-1/metabolismo , Factor de Transcripción AP-1/fisiología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/fisiología
6.
Cell ; 166(4): 935-949, 2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27477512

RESUMEN

Clearance of misfolded and aggregated proteins is central to cell survival. Here, we describe a new pathway for maintaining protein homeostasis mediated by the proteasome shuttle factor UBQLN2. The 26S proteasome degrades polyubiquitylated substrates by recognizing them through stoichiometrically bound ubiquitin receptors, but substrates are also delivered by reversibly bound shuttles. We aimed to determine why these parallel delivery mechanisms exist and found that UBQLN2 acts with the HSP70-HSP110 disaggregase machinery to clear protein aggregates via the 26S proteasome. UBQLN2 recognizes client-bound HSP70 and links it to the proteasome to allow for the degradation of aggregated and misfolded proteins. We further show that this process is active in the cell nucleus, where another system for aggregate clearance, autophagy, does not act. Finally, we found that mutations in UBQLN2, which lead to neurodegeneration in humans, are defective in chaperone binding, impair aggregate clearance, and cause cognitive deficits in mice.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Autofagia , Enfermedades Neurodegenerativas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Relacionadas con la Autofagia , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Proteínas HSP70 de Choque Térmico/metabolismo , Proteína Huntingtina/metabolismo , Masculino , Ratones , Enfermedades Neurodegenerativas/patología , Agregado de Proteínas , Pliegue de Proteína , Proteolisis
7.
Nat Immunol ; 19(12): 1309-1318, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30397349

RESUMEN

The unique cell biology of Toll-like receptor 4 (TLR4) allows it to initiate two signal-transduction cascades: a signal dependent on the adaptors TIRAP (Mal) and MyD88 that begins at the cell surface and regulates proinflammatory cytokines, and a signal dependent on the adaptors TRAM and TRIF that begins in the endosomes and drives the production of type I interferons. Negative feedback circuits to limit TLR4 signals from both locations are necessary to balance the inflammatory response. We describe a negative feedback loop driven by autocrine-paracrine prostaglandin E2 (PGE2) and the PGE2 receptor EP4 that restricted TRIF-dependent signals and the induction of interferon-ß through the regulation of TLR4 trafficking. Inhibition of PGE2 production or antagonism of EP4 increased the rate at which TLR4 translocated to endosomes and amplified TRIF-dependent activation of the transcription factor IRF3 and caspase-8. This PGE2-driven mechanism restricted TLR4-TRIF signaling in vitro after infection of macrophages by the Gram-negative pathogens Escherichia coli or Citrobacter rodentium and protected mice against mortality induced by Salmonella enteritidis serovar Typhimurium. Thus, PGE2 restricted TLR4-TRIF signaling specifically in response to lipopolysaccharide.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/inmunología , Dinoprostona/inmunología , Inmunidad Innata/inmunología , Transducción de Señal/inmunología , Receptor Toll-Like 4/inmunología , Animales , Infecciones Bacterianas/inmunología , Retroalimentación Fisiológica/fisiología , Humanos , Lipopolisacáridos/inmunología , Lipopolisacáridos/toxicidad , Ratones , Ratones Endogámicos C57BL , Células THP-1
8.
Nat Immunol ; 19(3): 246-254, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29358708

RESUMEN

Defective autophagy is linked to diseases such as rheumatoid arthritis, lupus and inflammatory bowel disease (IBD). However, the mechanisms by which autophagy limits inflammation remain poorly understood. Here we found that loss of the autophagy-related gene Atg16l1 promoted accumulation of the adaptor TRIF and downstream signaling in macrophages. Multiplex proteomic profiling identified SQSTM1 and Tax1BP1 as selective autophagy-related receptors that mediated the turnover of TRIF. Knockdown of Tax1bp1 increased production of the cytokines IFN-ß and IL-1ß. Mice lacking Atg16l1 in myeloid cells succumbed to lipopolysaccharide-mediated sepsis but enhanced their clearance of intestinal Salmonella typhimurium in an interferon receptor-dependent manner. Human macrophages with the Crohn's disease-associated Atg16l1 variant T300A exhibited more production of IFN-ß and IL-1ß. An elevated interferon-response gene signature was observed in patients with IBD who were resistant to treatment with an antibody to the cytokine TNF. These findings identify selective autophagy as a key regulator of signaling via the innate immune system.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/inmunología , Autofagia/inmunología , Inmunidad Innata/inmunología , Inflamación/inmunología , Animales , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/inmunología , Enfermedad de Crohn/inmunología , Femenino , Humanos , Macrófagos/inmunología , Masculino , Ratones , Ratones Transgénicos , Transducción de Señal/inmunología
9.
Nat Immunol ; 18(6): 622-632, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28459433

RESUMEN

The high risk of neonatal death from sepsis is thought to result from impaired responses by innate immune cells; however, the clinical observation of hyperinflammatory courses of neonatal sepsis contradicts this concept. Using transcriptomic, epigenetic and immunological approaches, we demonstrated that high amounts of the perinatal alarmins S100A8 and S100A9 specifically altered MyD88-dependent proinflammatory gene programs. S100 programming prevented hyperinflammatory responses without impairing pathogen defense. TRIF-adaptor-dependent regulatory genes remained unaffected by perinatal S100 programming and responded strongly to lipopolysaccharide, but were barely expressed. Steady-state expression of TRIF-dependent genes increased only gradually during the first year of life in human neonates, shifting immune regulation toward the adult phenotype. Disruption of this critical sequence of transient alarmin programming and subsequent reprogramming of regulatory pathways increased the risk of hyperinflammation and sepsis. Collectively these data suggest that neonates are characterized by a selective, transient microbial unresponsiveness that prevents harmful hyperinflammation in the delicate neonate while allowing for sufficient immunological protection.


Asunto(s)
Calgranulina A/inmunología , Calgranulina B/inmunología , Inmunidad Innata/inmunología , Monocitos/inmunología , Sepsis Neonatal/inmunología , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/inmunología , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Animales Recién Nacidos , Calgranulina A/efectos de los fármacos , Calgranulina B/efectos de los fármacos , Epigénesis Genética , Sangre Fetal , Citometría de Flujo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Inmunidad Innata/efectos de los fármacos , Immunoblotting , Recién Nacido , Inflamación , Lipopolisacáridos/farmacología , Ratones , Ratones Noqueados , Monocitos/efectos de los fármacos , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/inmunología , Sepsis Neonatal/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor Toll-Like 4/inmunología
10.
Nat Immunol ; 18(9): 1025-1034, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28737753

RESUMEN

Pathogenic T cells in individuals with rheumatoid arthritis (RA) infiltrate non-lymphoid tissue sites, maneuver through extracellular matrix and form lasting inflammatory microstructures. Here we found that RA T cells abundantly express the podosome scaffolding protein TKS5, which enables them to form tissue-invasive membrane structures. TKS5 overexpression was regulated by the intracellular metabolic environment of RA T cells-specifically, by reduced glycolytic flux that led to deficiencies in ATP and pyruvate. ATPlopyruvatelo conditions triggered fatty acid biosynthesis and the formation of cytoplasmic lipid droplets. Restoration of pyruvate production or inhibition of fatty acid synthesis corrected the tissue-invasiveness of RA T cells in vivo and reversed their proarthritogenic behavior. Thus, metabolic control of T cell locomotion provides new opportunities to interfere with T cell invasion into specific tissue sites.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Artritis Psoriásica/metabolismo , Artritis Reumatoide/metabolismo , Linfocitos T/metabolismo , Adenosina Trifosfato/metabolismo , Artritis Psoriásica/inmunología , Artritis Reumatoide/inmunología , Movimiento Celular/inmunología , Ácidos Grasos/biosíntesis , Femenino , Perfilación de la Expresión Génica , Glucólisis/inmunología , Humanos , Immunoblotting , Inmunohistoquímica , Inflamación , Masculino , Persona de Mediana Edad , Ácido Pirúvico/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Membrana Sinovial/citología , Membrana Sinovial/inmunología , Membrana Sinovial/metabolismo , Membrana Sinovial/patología , Linfocitos T/inmunología
11.
Cell ; 158(1): 54-68, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24995978

RESUMEN

Cells allocate substantial resources toward monitoring levels of nutrients that can be used for ATP generation by mitochondria. Among the many specialized cell types, neurons are particularly dependent on mitochondria due to their complex morphology and regional energy needs. Here, we report a molecular mechanism by which nutrient availability in the form of extracellular glucose and the enzyme O-GlcNAc Transferase (OGT), whose activity depends on glucose availability, regulates mitochondrial motility in neurons. Activation of OGT diminishes mitochondrial motility. We establish the mitochondrial motor-adaptor protein Milton as a required substrate for OGT to arrest mitochondrial motility by mapping and mutating the key O-GlcNAcylated serine residues. We find that the GlcNAcylation state of Milton is altered by extracellular glucose and that OGT alters mitochondrial motility in vivo. Our findings suggest that, by dynamically regulating Milton GlcNAcylation, OGT tailors mitochondrial dynamics in neurons based on nutrient availability.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Glucosa/metabolismo , Mitocondrias/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Animales , Axones/metabolismo , Proteínas Portadoras , Drosophila melanogaster , Técnicas de Silenciamiento del Gen , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , N-Acetilglucosaminiltransferasas/genética , Ratas , Alineación de Secuencia
12.
Cell ; 157(5): 1189-202, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24813850

RESUMEN

Receptor-interacting protein kinase (RIPK)-1 is involved in RIPK3-dependent and -independent signaling pathways leading to cell death and/or inflammation. Genetic ablation of ripk1 causes postnatal lethality, which was not prevented by deletion of ripk3, caspase-8, or fadd. However, animals that lack RIPK1, RIPK3, and either caspase-8 or FADD survived weaning and matured normally. RIPK1 functions in vitro to limit caspase-8-dependent, TNFR-induced apoptosis, and animals lacking RIPK1, RIPK3, and TNFR1 survive to adulthood. The role of RIPK3 in promoting lethality in ripk1(-/-) mice suggests that RIPK3 activation is inhibited by RIPK1 postbirth. Whereas TNFR-induced RIPK3-dependent necroptosis requires RIPK1, cells lacking RIPK1 were sensitized to necroptosis triggered by poly I:C or interferons. Disruption of TLR (TRIF) or type I interferon (IFNAR) signaling delayed lethality in ripk1(-/-)tnfr1(-/-) mice. These results clarify the complex roles for RIPK1 in postnatal life and provide insights into the regulation of FADD-caspase-8 and RIPK3-MLKL signaling by RIPK1.


Asunto(s)
Caspasa 8/metabolismo , Genes Letales , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Animales Recién Nacidos , Apoptosis , Caspasa 8/genética , Muerte Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Fibroblastos/metabolismo , Inflamación/metabolismo , Interferones/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Factores de Necrosis Tumoral/metabolismo
13.
Immunity ; 51(6): 997-1011.e7, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31851905

RESUMEN

Toll-like receptor (TLR) activation induces inflammatory responses in macrophages by activating temporally defined transcriptional cascades. Whether concurrent changes in the cellular metabolism that occur upon TLR activation influence the quality of the transcriptional responses remains unknown. Here, we investigated how macrophages adopt their metabolism early after activation to regulate TLR-inducible gene induction. Shortly after TLR4 activation, macrophages increased glycolysis and tricarboxylic acid (TCA) cycle volume. Metabolic tracing studies revealed that TLR signaling redirected metabolic fluxes to generate acetyl-Coenzyme A (CoA) from glucose resulting in augmented histone acetylation. Signaling through the adaptor proteins MyD88 and TRIF resulted in activation of ATP-citrate lyase, which in turn facilitated the induction of distinct LPS-inducible gene sets. We postulate that metabolic licensing of histone acetylation provides another layer of control that serves to fine-tune transcriptional responses downstream of TLR activation. Our work highlights the potential of targeting the metabolic-epigenetic axis in inflammatory settings.


Asunto(s)
ATP Citrato (pro-S)-Liasa/metabolismo , Acetilcoenzima A/metabolismo , Histonas/metabolismo , Macrófagos/metabolismo , Receptor Toll-Like 4/metabolismo , Acetilación , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Ciclo del Ácido Cítrico/fisiología , Glucólisis/fisiología , Humanos , Lipopolisacáridos/metabolismo , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Transducción de Señal , Transcripción Genética/genética
14.
Nature ; 610(7930): 212-216, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36071160

RESUMEN

Cytoplasmic dynein is a microtubule motor that is activated by its cofactor dynactin and a coiled-coil cargo adaptor1-3. Up to two dynein dimers can be recruited per dynactin, and interactions between them affect their combined motile behaviour4-6. Different coiled-coil adaptors are linked to different cargos7,8, and some share motifs known to contact sites on dynein and dynactin4,9-13. There is limited structural information on how the resulting complex interacts with microtubules and how adaptors are recruited. Here we develop a cryo-electron microscopy processing pipeline to solve the high-resolution structure of dynein-dynactin and the adaptor BICDR1 bound to microtubules. This reveals the asymmetric interactions between neighbouring dynein motor domains and how they relate to motile behaviour. We found that two adaptors occupy the complex. Both adaptors make similar interactions with the dyneins but diverge in their contacts with each other and dynactin. Our structure has implications for the stability and stoichiometry of motor recruitment by cargos.


Asunto(s)
Microscopía por Crioelectrón , Dineínas Citoplasmáticas , Complejo Dinactina , Microtúbulos , Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/ultraestructura , Dineínas Citoplasmáticas/química , Dineínas Citoplasmáticas/metabolismo , Dineínas Citoplasmáticas/ultraestructura , Complejo Dinactina/química , Complejo Dinactina/metabolismo , Complejo Dinactina/ultraestructura , Microtúbulos/química , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Unión Proteica
15.
Annu Rev Cell Dev Biol ; 30: 169-206, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25150009

RESUMEN

The trans-Golgi network (TGN) is an important cargo sorting station within the cell where newly synthesized proteins are packaged into distinct transport carriers that are targeted to various destinations. To maintain the fidelity of protein transport, elaborate protein sorting machinery is employed to mediate sorting of specific cargo proteins into distinct transport carriers. Protein sorting requires assembly of the cytosolic sorting machinery onto the TGN membrane and capture of cargo proteins. We review the cytosolic and transmembrane sorting machinery that function at the TGN and describe molecular interactions and regulatory mechanisms that enable accurate protein sorting. In addition, we highlight the importance of TGN sorting in physiology and disease.


Asunto(s)
Transporte de Proteínas/fisiología , Red trans-Golgi/fisiología , Factor 1 de Ribosilacion-ADP/fisiología , Proteínas Adaptadoras del Transporte Vesicular/fisiología , Secuencias de Aminoácidos , Animales , Proteínas Portadoras/fisiología , Polaridad Celular , Citosol/fisiología , Humanos , Lípidos de la Membrana/fisiología , Proteínas de Transporte de Membrana/fisiología , Modelos Biológicos , Modelos Moleculares , Fosfolípidos/fisiología , Conformación Proteica , Señales de Clasificación de Proteína/fisiología , Transporte de Proteínas/inmunología , Relación Estructura-Actividad , Vesículas Transportadoras/fisiología , Proteínas de Transporte Vesicular/fisiología , Red trans-Golgi/inmunología
16.
Immunity ; 48(1): 4-6, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29343439

RESUMEN

After LPS recognition, the MyD88-dependent and the TRIF-dependent pathways are consecutively activated in macrophages. Schappe et al. (2018) show that the chanzyme TRPM7 is required for an efficient LPS receptor complex endosomal relocation and the activation of the TRIF pathway.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular , Factor 88 de Diferenciación Mieloide , Lipopolisacáridos , Transducción de Señal , Receptor Toll-Like 4
17.
Immunity ; 48(3): 584-598.e5, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29548673

RESUMEN

Live vaccines historically afford superior protection, yet the cellular and molecular mechanisms mediating protective immunity remain unclear. Here we found that vaccination of mice with live, but not dead, Gram-negative bacteria heightened follicular T helper cell (Tfh) differentiation, germinal center formation, and protective antibody production through the signaling adaptor TRIF. Complementing the dead vaccine with an innate signature of bacterial viability, bacterial RNA, recapitulated these responses. The interferon (IFN) and inflammasome pathways downstream of TRIF orchestrated Tfh responses extrinsically to B cells and classical dendritic cells. Instead, CX3CR1+CCR2- monocytes instructed Tfh differentiation through interleukin-1ß (IL-1ß), a tightly regulated cytokine secreted upon TRIF-dependent IFN licensing of the inflammasome. Hierarchical production of IFN-ß and IL-1ß dictated Tfh differentiation and elicited the augmented humoral responses characteristic of live vaccines. These findings identify bacterial RNA, an innate signature of microbial viability, as a trigger for Tfh differentiation and suggest new approaches toward vaccine formulations for coordinating augmented Tfh and B cell responses.


Asunto(s)
Formación de Anticuerpos/inmunología , Linfocitos B/inmunología , Activación de Linfocitos/inmunología , Viabilidad Microbiana/inmunología , ARN Bacteriano/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Proteínas Adaptadoras del Transporte Vesicular/inmunología , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Anticuerpos Neutralizantes/inmunología , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Linfocitos B/metabolismo , Vacunas Bacterianas/inmunología , Biomarcadores , Diferenciación Celular/inmunología , Citocinas/metabolismo , Centro Germinal , Interacciones Huésped-Patógeno/inmunología , Inmunidad Celular , Inmunidad Innata , Inflamasomas/metabolismo , Ratones , Monocitos/inmunología , Monocitos/metabolismo , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Receptores Tipo I de Interleucina-1/genética , Receptores Tipo I de Interleucina-1/metabolismo , Transducción de Señal , Linfocitos T Colaboradores-Inductores/metabolismo
18.
PLoS Biol ; 22(9): e3002833, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39316607

RESUMEN

Clathrin-mediated endocytosis (CME) is a critical trafficking process that begins when an elaborate endocytic protein network is established at the plasma membrane. Interaction of early endocytic proteins with anionic phospholipids and/or cargo has been suggested to trigger CME initiation. However, the exact mechanism by which CME sites are initiated has not been fully elucidated. In the budding yeast Saccharomyces cerevisiae, higher levels of anionic phospholipids and cargo molecules exist in the newly formed daughter cell compared to the levels in the mother cell during polarized growth. Taking advantage of this asymmetry, we quantitatively compared CME proteins in S. cerevisiae mother versus daughter cells, observing differences in the dynamics and composition of key endocytic proteins. Our results show that CME site initiation occurs preferentially on regions of the plasma membrane with a relatively higher density of endocytic cargo and/or acidic phospholipids. Furthermore, our combined live cell-imaging and yeast genetics analysis provided evidence for a molecular mechanism in which CME sites are initiated when Yap1801 and Yap1802 (yeast CALM/AP180) and Syp1 (yeast FCHo1/2) coordinate with anionic phospholipids and cargo molecules to trigger Ede1 (yeast Eps15)-centric CME initiation complex assembly at the plasma membrane.


Asunto(s)
Clatrina , Endocitosis , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Membrana Celular/metabolismo , Clatrina/metabolismo , Endocitosis/fisiología , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
19.
Cell ; 149(1): 124-36, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22464325

RESUMEN

Shallow hydrophobic insertions and crescent-shaped BAR scaffolds promote membrane curvature. Here, we investigate membrane fission by shallow hydrophobic insertions quantitatively and mechanistically. We provide evidence that membrane insertion of the ENTH domain of epsin leads to liposome vesiculation, and that epsin is required for clathrin-coated vesicle budding in cells. We also show that BAR-domain scaffolds from endophilin, amphiphysin, GRAF, and ß2-centaurin limit membrane fission driven by hydrophobic insertions. A quantitative assay for vesiculation reveals an antagonistic relationship between amphipathic helices and scaffolds of N-BAR domains in fission. The extent of vesiculation by these proteins and vesicle size depend on the number and length of amphipathic helices per BAR domain, in accord with theoretical considerations. This fission mechanism gives a new framework for understanding membrane scission in the absence of mechanoenzymes such as dynamin and suggests how Arf and Sar proteins work in vesicle scission.


Asunto(s)
Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Línea Celular , Membrana Celular/química , Membrana Celular/metabolismo , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Liposomas/química , Liposomas/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Estructura Terciaria de Proteína
20.
Cell ; 150(3): 606-19, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-22819539

RESUMEN

Systemic infections with Gram-negative bacteria are characterized by high mortality rates due to the "sepsis syndrome," a widespread and uncontrolled inflammatory response. Though it is well recognized that the immune response during Gram-negative bacterial infection is initiated after the recognition of endotoxin by Toll-like receptor 4, the molecular mechanisms underlying the detrimental inflammatory response during Gram-negative bacteremia remain poorly defined. Here, we identify a TRIF pathway that licenses NLRP3 inflammasome activation by all Gram-negative bacteria. By engaging TRIF, Gram-negative bacteria activate caspase-11. TRIF activates caspase-11 via type I IFN signaling, an event that is both necessary and sufficient for caspase-11 induction and autoactivation. Caspase-11 subsequently synergizes with the assembled NLRP3 inflammasome to regulate caspase-1 activation and leads to caspase-1-independent cell death. These events occur specifically during infection with Gram-negative, but not Gram-positive, bacteria. The identification of TRIF as a regulator of caspase-11 underscores the importance of TLRs as master regulators of inflammasomes during Gram-negative bacterial infection.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Caspasas/metabolismo , Citrobacter rodentium/metabolismo , Escherichia coli Enterohemorrágica/metabolismo , Inflamasomas/metabolismo , Interferones/metabolismo , Animales , Proteínas Portadoras/metabolismo , Caspasas Iniciadoras , Citrobacter rodentium/inmunología , Escherichia coli Enterohemorrágica/inmunología , Bacterias Gramnegativas/inmunología , Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas/inmunología , Bacterias Grampositivas/metabolismo , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA