Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.528
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 174(5): 1106-1116.e9, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30100181

RESUMEN

The SET1/MLL family of histone methyltransferases is conserved in eukaryotes and regulates transcription by catalyzing histone H3K4 mono-, di-, and tri-methylation. These enzymes form a common five-subunit catalytic core whose assembly is critical for their basal and regulated enzymatic activities through unknown mechanisms. Here, we present the crystal structure of the intact yeast COMPASS histone methyltransferase catalytic module consisting of Swd1, Swd3, Bre2, Sdc1, and Set1. The complex is organized by Swd1, whose conserved C-terminal tail not only nucleates Swd3 and a Bre2-Sdc1 subcomplex, but also joins Set1 to construct a regulatory pocket next to the catalytic site. This inter-subunit pocket is targeted by a previously unrecognized enzyme-modulating motif in Swd3 and features a doorstop-style mechanism dictating substrate selectivity among SET1/MLL family members. By spatially mapping the functional components of COMPASS, our results provide a structural framework for understanding the multifaceted functions and regulation of the H3K4 methyltransferase family.


Asunto(s)
Proteínas Fúngicas/química , N-Metiltransferasa de Histona-Lisina/química , Histonas/química , Kluyveromyces/química , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Línea Celular , Cristalografía por Rayos X , Proteínas de Unión al ADN/química , Humanos , Insectos , Metilación , Proteínas Nucleares/química , Dominios Proteicos , Saccharomyces cerevisiae/química , Alineación de Secuencia , Especificidad por Sustrato , Factores de Transcripción/química
2.
Cell ; 174(5): 1117-1126.e12, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30100186

RESUMEN

The methylation of histone 3 lysine 4 (H3K4) is carried out by an evolutionarily conserved family of methyltransferases referred to as complex of proteins associated with Set1 (COMPASS). The activity of the catalytic SET domain (su(var)3-9, enhancer-of-zeste, and trithorax) is endowed through forming a complex with a set of core proteins that are widely shared from yeast to humans. We obtained cryo-electron microscopy (cryo-EM) maps of the yeast Set1/COMPASS core complex at overall 4.0- to 4.4-Å resolution, providing insights into its structural organization and conformational dynamics. The Cps50 C-terminal tail weaves within the complex to provide a central scaffold for assembly. The SET domain, snugly positioned at the junction of the Y-shaped complex, is extensively contacted by Cps60 (Bre2), Cps50 (Swd1), and Cps30 (Swd3). The mobile SET-I motif of the SET domain is engaged by Cps30, explaining its key role in COMPASS catalytic activity toward higher H3K4 methylation states.


Asunto(s)
Proteínas Fúngicas/química , Histona Metiltransferasas/química , Histonas/química , Animales , Dominio Catalítico , Chaetomium/química , Cromatina/química , Microscopía por Crioelectrón , Proteínas de Unión al ADN/química , Epigénesis Genética , N-Metiltransferasa de Histona-Lisina/química , Humanos , Insectos , Péptidos y Proteínas de Señalización Intracelular , Metilación , Subunidades de Proteína , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Programas Informáticos
3.
Cell ; 170(4): 693-700.e7, 2017 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-28802041

RESUMEN

The TOM complex is the main entry gate for protein precursors from the cytosol into mitochondria. We have determined the structure of the TOM core complex by cryoelectron microscopy (cryo-EM). The complex is a 148 kDa symmetrical dimer of ten membrane protein subunits that create a shallow funnel on the cytoplasmic membrane surface. In the core of the dimer, the ß-barrels of the Tom40 pore form two identical preprotein conduits. Each Tom40 pore is surrounded by the transmembrane segments of the α-helical subunits Tom5, Tom6, and Tom7. Tom22, the central preprotein receptor, connects the two Tom40 pores at the dimer interface. Our structure offers detailed insights into the molecular architecture of the mitochondrial preprotein import machinery.


Asunto(s)
Proteínas Portadoras/química , Proteínas Fúngicas/química , Neurospora crassa/enzimología , Sistemas de Translocación de Proteínas/química , Secuencia de Aminoácidos , Proteínas Portadoras/genética , Proteínas Portadoras/ultraestructura , Microscopía por Crioelectrón , Proteínas Fúngicas/genética , Proteínas Fúngicas/ultraestructura , Espectrometría de Masas , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/ultraestructura , Membranas Mitocondriales/enzimología , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Modelos Moleculares , Conformación Proteica en Lámina beta , Sistemas de Translocación de Proteínas/genética , Sistemas de Translocación de Proteínas/ultraestructura , Proteínas de Saccharomyces cerevisiae/química
4.
Cell ; 171(3): 588-600.e24, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-28988770

RESUMEN

Condensin protein complexes coordinate the formation of mitotic chromosomes and thereby ensure the successful segregation of replicated genomes. Insights into how condensin complexes bind to chromosomes and alter their topology are essential for understanding the molecular principles behind the large-scale chromatin rearrangements that take place during cell divisions. Here, we identify a direct DNA-binding site in the eukaryotic condensin complex, which is formed by its Ycg1Cnd3 HEAT-repeat and Brn1Cnd2 kleisin subunits. DNA co-crystal structures reveal a conserved, positively charged groove that accommodates the DNA double helix. A peptide loop of the kleisin subunit encircles the bound DNA and, like a safety belt, prevents its dissociation. Firm closure of the kleisin loop around DNA is essential for the association of condensin complexes with chromosomes and their DNA-stimulated ATPase activity. Our data suggest a sophisticated molecular basis for anchoring condensin complexes to chromosomes that enables the formation of large-sized chromatin loops.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cromosomas/metabolismo , Proteínas de Unión al ADN/metabolismo , Eucariontes/metabolismo , Proteínas Fúngicas/metabolismo , Complejos Multiproteicos/metabolismo , Adenosina Trifosfatasas/química , Secuencia de Aminoácidos , Chaetomium/metabolismo , Cromosomas/química , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , Proteínas de Unión al ADN/química , Eucariontes/química , Proteínas Fúngicas/química , Células HeLa , Humanos , Modelos Moleculares , Complejos Multiproteicos/química , Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia
5.
Cell ; 167(4): 1014-1027.e12, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27881300

RESUMEN

Kinetochores connect centromeric nucleosomes with mitotic-spindle microtubules through conserved, cross-interacting protein subassemblies. In budding yeast, the heterotetrameric MIND complex (Mtw1, Nnf1, Nsl1, Dsn1), ortholog of the metazoan Mis12 complex, joins the centromere-proximal components, Mif2 and COMA, with the principal microtubule-binding component, the Ndc80 complex (Ndc80C). We report the crystal structure of Kluyveromyces lactis MIND and examine its partner interactions, to understand the connection from a centromeric nucleosome to a much larger microtubule. MIND resembles an elongated, asymmetric Y; two globular heads project from a coiled-coil shaft. An N-terminal extension of Dsn1 from one head regulates interactions of the other head, blocking binding of Mif2 and COMA. Dsn1 phosphorylation by Ipl1/Aurora B relieves this autoinhibition, enabling MIND to join an assembling kinetochore. A C-terminal extension of Dsn1 recruits Ndc80C to the opposite end of the shaft. The structure and properties of MIND show how it integrates phospho-regulatory inputs for kinetochore assembly and disassembly.


Asunto(s)
Proteínas Cromosómicas no Histona/química , Proteínas Fúngicas/química , Cinetocoros/química , Kluyveromyces/química , Complejos Multiproteicos/química , Proteínas Cromosómicas no Histona/metabolismo , Cristalografía por Rayos X , Proteínas Fúngicas/metabolismo , Cinetocoros/metabolismo , Kluyveromyces/citología , Kluyveromyces/metabolismo , Complejos Multiproteicos/metabolismo
6.
Cell ; 164(1-2): 91-102, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26709046

RESUMEN

Eukaryotic ribosome biogenesis depends on several hundred assembly factors to produce functional 40S and 60S ribosomal subunits. The final phase of 60S subunit biogenesis is cytoplasmic maturation, which includes the proofreading of functional centers of the 60S subunit and the release of several ribosome biogenesis factors. We report the cryo-electron microscopy (cryo-EM) structure of the yeast 60S subunit in complex with the biogenesis factors Rei1, Arx1, and Alb1 at 3.4 Å resolution. In addition to the network of interactions formed by Alb1, the structure reveals a mechanism for ensuring the integrity of the ribosomal polypeptide exit tunnel. Arx1 probes the entire set of inner-ring proteins surrounding the tunnel exit, and the C terminus of Rei1 is deeply inserted into the ribosomal tunnel, where it forms specific contacts along almost its entire length. We provide genetic and biochemical evidence that failure to insert the C terminus of Rei1 precludes subsequent steps of 60S maturation.


Asunto(s)
Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Chaetomium/metabolismo , Microscopía por Crioelectrón , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/ultraestructura , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestructura , Alineación de Secuencia
7.
Nature ; 614(7946): 175-181, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36482135

RESUMEN

Mitochondrial ribosomes (mitoribosomes) synthesize proteins encoded within the mitochondrial genome that are assembled into oxidative phosphorylation complexes. Thus, mitoribosome biogenesis is essential for ATP production and cellular metabolism1. Here we used cryo-electron microscopy to determine nine structures of native yeast and human mitoribosomal small subunit assembly intermediates, illuminating the mechanistic basis for how GTPases are used to control early steps of decoding centre formation, how initial rRNA folding and processing events are mediated, and how mitoribosomal proteins have active roles during assembly. Furthermore, this series of intermediates from two species with divergent mitoribosomal architecture uncovers both conserved principles and species-specific adaptations that govern the maturation of mitoribosomal small subunits in eukaryotes. By revealing the dynamic interplay between assembly factors, mitoribosomal proteins and rRNA that are required to generate functional subunits, our structural analysis provides a vignette for how molecular complexity and diversity can evolve in large ribonucleoprotein assemblies.


Asunto(s)
Microscopía por Crioelectrón , Ribosomas Mitocondriales , Ribonucleoproteínas , Subunidades Ribosómicas Pequeñas , Saccharomyces cerevisiae , Humanos , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/ultraestructura , Ribosomas Mitocondriales/química , Ribosomas Mitocondriales/metabolismo , Ribosomas Mitocondriales/ultraestructura , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/ultraestructura , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , ARN Ribosómico , GTP Fosfohidrolasas , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/ultraestructura , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/ultraestructura , Subunidades Ribosómicas Pequeñas/química , Subunidades Ribosómicas Pequeñas/metabolismo , Subunidades Ribosómicas Pequeñas/ultraestructura
8.
Nature ; 620(7974): 660-668, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37380027

RESUMEN

RNA-guided systems, which use complementarity between a guide RNA and target nucleic acid sequences for recognition of genetic elements, have a central role in biological processes in both prokaryotes and eukaryotes. For example, the prokaryotic CRISPR-Cas systems provide adaptive immunity for bacteria and archaea against foreign genetic elements. Cas effectors such as Cas9 and Cas12 perform guide-RNA-dependent DNA cleavage1. Although a few eukaryotic RNA-guided systems have been studied, including RNA interference2 and ribosomal RNA modification3, it remains unclear whether eukaryotes have RNA-guided endonucleases. Recently, a new class of prokaryotic RNA-guided systems (termed OMEGA) was reported4,5. The OMEGA effector TnpB is the putative ancestor of Cas12 and has RNA-guided endonuclease activity4,6. TnpB may also be the ancestor of the eukaryotic transposon-encoded Fanzor (Fz) proteins4,7, raising the possibility that eukaryotes are also equipped with CRISPR-Cas or OMEGA-like programmable RNA-guided endonucleases. Here we report the biochemical characterization of Fz, showing that it is an RNA-guided DNA endonuclease. We also show that Fz can be reprogrammed for human genome engineering applications. Finally, we resolve the structure of Spizellomyces punctatus Fz at 2.7 Å using cryogenic electron microscopy, showing the conservation of core regions among Fz, TnpB and Cas12, despite diverse cognate RNA structures. Our results show that Fz is a eukaryotic OMEGA system, demonstrating that RNA-guided endonucleases are present in all three domains of life.


Asunto(s)
Quitridiomicetos , Endonucleasas , Eucariontes , Proteínas Fúngicas , Edición Génica , ARN , Humanos , Archaea/genética , Archaea/inmunología , Bacterias/genética , Bacterias/inmunología , Proteína 9 Asociada a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/ultraestructura , Sistemas CRISPR-Cas , Elementos Transponibles de ADN/genética , Endonucleasas/química , Endonucleasas/metabolismo , Endonucleasas/ultraestructura , Eucariontes/enzimología , Edición Génica/métodos , ARN/genética , ARN/metabolismo , ARN Guía de Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas/metabolismo , Microscopía por Crioelectrón , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/ultraestructura , Evolución Molecular , Secuencia Conservada , Quitridiomicetos/enzimología
9.
Mol Cell ; 81(13): 2705-2721.e8, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33974911

RESUMEN

The TSC complex is a critical negative regulator of the small GTPase Rheb and mTORC1 in cellular stress signaling. The TSC2 subunit contains a catalytic GTPase activating protein domain and interacts with multiple regulators, while the precise function of TSC1 is unknown. Here we provide a structural characterization of TSC1 and define three domains: a C-terminal coiled-coil that interacts with TSC2, a central helical domain that mediates TSC1 oligomerization, and an N-terminal HEAT repeat domain that interacts with membrane phosphatidylinositol phosphates (PIPs). TSC1 architecture, oligomerization, and membrane binding are conserved in fungi and humans. We show that lysosomal recruitment of the TSC complex and subsequent inactivation of mTORC1 upon starvation depend on the marker lipid PI3,5P2, demonstrating a role for lysosomal PIPs in regulating TSC complex and mTORC1 activity via TSC1. Our study thus identifies a vital role of TSC1 in TSC complex function and mTORC1 signaling.


Asunto(s)
Chaetomium , Proteínas Fúngicas , Lisosomas , Diana Mecanicista del Complejo 1 de la Rapamicina , Fosfatos de Fosfatidilinositol , Serina C-Palmitoiltransferasa , Chaetomium/química , Chaetomium/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Lisosomas/química , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/química , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Serina C-Palmitoiltransferasa/química , Serina C-Palmitoiltransferasa/metabolismo
10.
Cell ; 151(7): 1501-1512, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23219485

RESUMEN

Macroautophagy is a bulk clearance mechanism in which the double-membraned phagophore grows and engulfs cytosolic material. In yeast, the phagophore nucleates from a cluster of 20-30 nm diameter Atg9-containing vesicles located at a multiprotein assembly known as the preautophagosomal structure (PAS). The crystal structure of a 2:2:2 complex of the earliest acting PAS proteins, Atg17, Atg29, and Atg31, was solved at 3.05 Å resolution. Atg17 is crescent shaped with a 10 nm radius of curvature. Dimerization of the Atg17-Atg31-Atg29 complex is critical for both PAS formation and autophagy, and each dimer contains two separate and complete crescents. Upon induction of autophagy, Atg17-Atg31-Atg29 assembles with Atg1 and Atg13, which in turn initiates the formation of the phagophore. The C-terminal EAT domain of Atg1 was shown to sense membrane curvature, dimerize, and tether lipid vesicles. These data suggest a structural mechanism for the organization of Atg9 vesicles into the early phagophore.


Asunto(s)
Proteínas Portadoras/química , Proteínas Fúngicas/química , Complejos Multiproteicos/química , Fagosomas/metabolismo , Saccharomycetales/química , Saccharomycetales/citología , Secuencia de Aminoácidos , Autofagia , Proteínas Relacionadas con la Autofagia , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomycetales/metabolismo , Alineación de Secuencia
11.
Mol Cell ; 76(5): 712-723.e4, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31733991

RESUMEN

The COMPASS (complex of proteins associated with Set1) complex represents the prototype of the SET1/MLL family of methyltransferases that controls gene transcription by H3K4 methylation (H3K4me). Although H2B monoubiquitination (H2Bub) is well known as a prerequisite histone mark for COMPASS activity, how H2Bub activates COMPASS remains unclear. Here, we report the cryoelectron microscopy (cryo-EM) structures of an extended COMPASS catalytic module (CM) bound to the H2Bub and free nucleosome. The COMPASS CM clamps onto the nucleosome disk-face via an extensive interface to capture the flexible H3 N-terminal tail. The interface also sandwiches a critical Set1 arginine-rich motif (ARM) that autoinhibits COMPASS. Unexpectedly, without enhancing COMPASS-nucleosome interaction, H2Bub activates the enzymatic assembly by packing against Swd1 and alleviating the inhibitory effect of the Set1 ARM upon fastening it to the acidic patch. By delineating the spatial configuration of the COMPASS-H2Bub-nucleosome assembly, our studies establish the structural framework for understanding the long-studied H2Bub-H3K4me histone modification crosstalk.


Asunto(s)
Histona Metiltransferasas/ultraestructura , Histonas/ultraestructura , Cromatina/genética , Microscopía por Crioelectrón/métodos , Metilación de ADN/genética , Epigénesis Genética/genética , Epigenómica/métodos , Proteínas Fúngicas/química , Histona Metiltransferasas/química , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/química , Histonas/genética , Kluyveromyces/genética , Kluyveromyces/metabolismo , Metiltransferasas/metabolismo , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Nucleosomas/metabolismo , Subunidades de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitinación
12.
Proc Natl Acad Sci U S A ; 121(34): e2400912121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39145930

RESUMEN

Myo-inositol-1-phosphate synthase (MIPS) catalyzes the NAD+-dependent isomerization of glucose-6-phosphate (G6P) into inositol-1-phosphate (IMP), controlling the rate-limiting step of the inositol pathway. Previous structural studies focused on the detailed molecular mechanism, neglecting large-scale conformational changes that drive the function of this 240 kDa homotetrameric complex. In this study, we identified the active, endogenous MIPS in cell extracts from the thermophilic fungus Thermochaetoides thermophila. By resolving the native structure at 2.48 Å (FSC = 0.143), we revealed a fully populated active site. Utilizing 3D variability analysis, we uncovered conformational states of MIPS, enabling us to directly visualize an order-to-disorder transition at its catalytic center. An acyclic intermediate of G6P occupied the active site in two out of the three conformational states, indicating a catalytic mechanism where electrostatic stabilization of high-energy intermediates plays a crucial role. Examination of all isomerases with known structures revealed similar fluctuations in secondary structure within their active sites. Based on these findings, we established a conformational selection model that governs substrate binding and eventually inositol availability. In particular, the ground state of MIPS demonstrates structural configurations regardless of substrate binding, a pattern observed across various isomerases. These findings contribute to the understanding of MIPS structure-based function, serving as a template for future studies targeting regulation and potential therapeutic applications.


Asunto(s)
Dominio Catalítico , Inositol , Mio-Inositol-1-Fosfato Sintasa , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Mio-Inositol-1-Fosfato Sintasa/genética , Mio-Inositol-1-Fosfato Sintasa/química , Inositol/metabolismo , Inositol/química , Fosfatos de Inositol/metabolismo , Glucosa-6-Fosfato/metabolismo , Glucosa-6-Fosfato/química , Modelos Moleculares , Conformación Proteica , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química
13.
Proc Natl Acad Sci U S A ; 121(18): e2322567121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38648472

RESUMEN

Degrading cellulose is a key step in the processing of lignocellulosic biomass into bioethanol. Cellobiose, the disaccharide product of cellulose degradation, has been shown to inhibit cellulase activity, but the mechanisms underlying product inhibition are not clear. We combined single-molecule imaging and biochemical investigations with the goal of revealing the mechanism by which cellobiose inhibits the activity of Trichoderma reesei Cel7A, a well-characterized exo-cellulase. We find that cellobiose slows the processive velocity of Cel7A and shortens the distance moved per encounter; effects that can be explained by cellobiose binding to the product release site of the enzyme. Cellobiose also strongly inhibits the binding of Cel7A to immobilized cellulose, with a Ki of 2.1 mM. The isolated catalytic domain (CD) of Cel7A was also inhibited to a similar degree by cellobiose, and binding of an isolated carbohydrate-binding module to cellulose was not inhibited by cellobiose, suggesting that cellobiose acts on the CD alone. Finally, cellopentaose inhibited Cel7A binding at micromolar concentrations without affecting the enzyme's velocity of movement along cellulose. Together, these results suggest that cellobiose inhibits Cel7A activity both by binding to the "back door" product release site to slow activity and to the "front door" substrate-binding tunnel to inhibit interaction with cellulose. These findings point to strategies for engineering cellulases to reduce product inhibition and enhance cellulose degradation, supporting the growth of a sustainable bioeconomy.


Asunto(s)
Celobiosa , Celulasa , Celulosa , Hypocreales , Celobiosa/metabolismo , Celulasa/metabolismo , Celulasa/antagonistas & inhibidores , Celulosa/metabolismo , Hypocreales/enzimología , Hypocreales/metabolismo , Imagen Individual de Molécula/métodos , Dominio Catalítico , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/química
14.
Proc Natl Acad Sci U S A ; 121(32): e2314087121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39083421

RESUMEN

Invasive fungal diseases are a major threat to human health, resulting in more than 1.5 million annual deaths worldwide. The arsenal of antifungal therapeutics remains limited and is in dire need of drugs that target additional biosynthetic pathways that are absent from humans. One such pathway involves the biosynthesis of trehalose. Trehalose is a disaccharide that is required for pathogenic fungi to survive in their human hosts. In the first step of trehalose biosynthesis, trehalose-6-phosphate synthase (Tps1) converts UDP-glucose and glucose-6-phosphate to trehalose-6-phosphate. Here, we report the structures of full-length Cryptococcus neoformans Tps1 (CnTps1) in unliganded form and in complex with uridine diphosphate and glucose-6-phosphate. Comparison of these two structures reveals significant movement toward the catalytic pocket by the N terminus upon ligand binding and identifies residues required for substrate binding, as well as residues that stabilize the tetramer. Intriguingly, an intrinsically disordered domain (IDD), which is conserved among Cryptococcal species and closely related basidiomycetes, extends from each subunit of the tetramer into the "solvent" but is not visible in density maps. We determined that the IDD is not required for C. neoformans Tps1-dependent thermotolerance and osmotic stress survival. Studies with UDP-galactose highlight the exquisite substrate specificity of CnTps1. In toto, these studies expand our knowledge of trehalose biosynthesis in Cryptococcus and highlight the potential of developing antifungal therapeutics that disrupt the synthesis of this disaccharide or the formation of a functional tetramer and the use of cryo-EM in the structural characterization of CnTps1-ligand/drug complexes.


Asunto(s)
Antifúngicos , Cryptococcus neoformans , Glucosiltransferasas , Trehalosa , Cryptococcus neoformans/enzimología , Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/genética , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética , Antifúngicos/farmacología , Antifúngicos/química , Antifúngicos/metabolismo , Trehalosa/metabolismo , Trehalosa/análogos & derivados , Trehalosa/biosíntesis , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Modelos Moleculares , Humanos , Dominio Catalítico , Cristalografía por Rayos X
15.
Proc Natl Acad Sci U S A ; 121(28): e2402872121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968126

RESUMEN

Bioengineering of plant immune receptors has emerged as a key strategy for generating novel disease resistance traits to counteract the expanding threat of plant pathogens to global food security. However, current approaches are limited by rapid evolution of plant pathogens in the field and may lack durability when deployed. Here, we show that the rice nucleotide-binding, leucine-rich repeat (NLR) immune receptor Pik-1 can be engineered to respond to a conserved family of effectors from the multihost blast fungus pathogen Magnaporthe oryzae. We switched the effector binding and response profile of the Pik NLR from its cognate rice blast effector AVR-Pik to the host-determining factor pathogenicity toward weeping lovegrass 2 (Pwl2) by installing a putative host target, OsHIPP43, in place of the native integrated heavy metal-associated domain (generating Pikm-1OsHIPP43). This chimeric receptor also responded to other PWL alleles from diverse blast isolates. The crystal structure of the Pwl2/OsHIPP43 complex revealed a multifaceted, robust interface that cannot be easily disrupted by mutagenesis, and may therefore provide durable, broad resistance to blast isolates carrying PWL effectors in the field. Our findings highlight how the host targets of pathogen effectors can be used to bioengineer recognition specificities that have more robust properties compared to naturally evolved disease resistance genes.


Asunto(s)
Proteínas Fúngicas , Proteínas NLR , Oryza , Enfermedades de las Plantas , Proteínas de Plantas , Oryza/microbiología , Oryza/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Proteínas NLR/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/inmunología , Proteínas de Plantas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/inmunología , Interacciones Huésped-Patógeno/inmunología , Resistencia a la Enfermedad/inmunología , Inmunidad de la Planta , Bioingeniería/métodos , Magnaporthe/inmunología , Magnaporthe/genética , Magnaporthe/metabolismo , Unión Proteica , Receptores Inmunológicos/metabolismo , Ascomicetos
16.
Proc Natl Acad Sci U S A ; 121(35): e2409628121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39163341

RESUMEN

Protein kinase Gcn2 attenuates protein synthesis in response to amino acid starvation while stimulating translation of a transcriptional activator of amino acid biosynthesis. Gcn2 activation requires a domain related to histidyl-tRNA synthetase (HisRS), the enzyme that aminoacylates tRNAHis. While evidence suggests that deacylated tRNA binds the HisRS domain for kinase activation, ribosomal P-stalk proteins have been implicated as alternative activating ligands on stalled ribosomes. We report crystal structures of the HisRS domain of Chaetomium thermophilum Gcn2 that reveal structural mimicry of both catalytic (CD) and anticodon-binding (ABD) domains, which in authentic HisRS bind the acceptor stem and anticodon loop of tRNAHis. Elements for forming histidyl adenylate and aminoacylation are lacking, suggesting that Gcn2HisRS was repurposed for kinase activation, consistent with mutations in the CD that dysregulate yeast Gcn2 function. Substituting conserved ABD residues well positioned to contact the anticodon loop or that form a conserved ABD-CD interface impairs Gcn2 function in starved cells. Mimicry in Gcn2HisRS of two highly conserved structural domains for binding both ends of tRNA-each crucial for Gcn2 function-supports that deacylated tRNAs activate Gcn2 and exemplifies how a metabolic enzyme is repurposed to host new local structures and sequences that confer a novel regulatory function.


Asunto(s)
Chaetomium , Histidina-ARNt Ligasa , Proteínas Serina-Treonina Quinasas , Chaetomium/enzimología , Chaetomium/genética , Chaetomium/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Histidina-ARNt Ligasa/metabolismo , Histidina-ARNt Ligasa/química , Histidina-ARNt Ligasa/genética , Estrés Fisiológico , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Cristalografía por Rayos X , Modelos Moleculares , Dominios Proteicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química
17.
PLoS Genet ; 20(4): e1011252, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38683847

RESUMEN

Pneumocystis jirovecii is a fungal pathogen that causes pneumocystis pneumonia, a disease that mainly affects immunocompromised individuals. This fungus has historically been hard to study because of our inability to grow it in vitro. One of the main drug targets in P. jirovecii is its dihydrofolate reductase (PjDHFR). Here, by using functional complementation of the baker's yeast ortholog, we show that PjDHFR can be inhibited by the antifolate methotrexate in a dose-dependent manner. Using deep mutational scanning of PjDHFR, we identify mutations conferring resistance to methotrexate. Thirty-one sites spanning the protein have at least one mutation that leads to resistance, for a total of 355 high-confidence resistance mutations. Most resistance-inducing mutations are found inside the active site, and many are structurally equivalent to mutations known to lead to resistance to different antifolates in other organisms. Some sites show specific resistance mutations, where only a single substitution confers resistance, whereas others are more permissive, as several substitutions at these sites confer resistance. Surprisingly, one of the permissive sites (F199) is without direct contact to either ligand or cofactor, suggesting that it acts through an allosteric mechanism. Modeling changes in binding energy between F199 mutants and drug shows that most mutations destabilize interactions between the protein and the drug. This evidence points towards a more important role of this position in resistance than previously estimated and highlights potential unknown allosteric mechanisms of resistance to antifolate in DHFRs. Our results offer unprecedented resources for the interpretation of mutation effects in the main drug target of an uncultivable fungal pathogen.


Asunto(s)
Farmacorresistencia Fúngica , Antagonistas del Ácido Fólico , Metotrexato , Mutación , Pneumocystis carinii , Tetrahidrofolato Deshidrogenasa , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Tetrahidrofolato Deshidrogenasa/química , Pneumocystis carinii/genética , Pneumocystis carinii/enzimología , Pneumocystis carinii/efectos de los fármacos , Antagonistas del Ácido Fólico/farmacología , Farmacorresistencia Fúngica/genética , Metotrexato/farmacología , Regulación Alostérica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de los fármacos , Humanos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Dominio Catalítico/genética
18.
RNA ; 30(10): 1306-1314, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013577

RESUMEN

Fungal RNA ligase (LIG) is an essential tRNA splicing enzyme that joins 3'-OH,2'-PO4 and 5'-PO4 RNA ends to form a 2'-PO4,3'-5' phosphodiester splice junction. Sealing entails three divalent cation-dependent adenylate transfer steps. First, LIG reacts with ATP to form a covalent ligase-(lysyl-Nζ)-AMP intermediate and displace pyrophosphate. Second, LIG transfers AMP to the 5'-PO4 RNA terminus to form an RNA-adenylate intermediate (A5'pp5'RNA). Third, LIG directs the attack of an RNA 3'-OH on AppRNA to form the splice junction and displace AMP. A defining feature of fungal LIG vis-à-vis canonical polynucleotide ligases is the requirement for a 2'-PO4 to synthesize a 3'-5' phosphodiester bond. Fungal LIG consists of an N-terminal adenylyltransferase domain and a unique C-terminal domain. The C-domain of Chaetomium thermophilum LIG (CthLIG) engages a sulfate anion thought to be a mimetic of the terminal 2'-PO4 Here, we interrogated the contributions of the C-domain and the conserved sulfate ligands (His227, Arg334, Arg337) to ligation of a pRNA2'p substrate. We find that the C-domain is essential for end-joining but dispensable for ligase adenylylation. Mutations H227A, R334A, and R337A slowed the rate of step 2 RNA adenylation by 420-fold, 120-fold, and 60-fold, respectively, vis-à-vis wild-type CthLIG. An R334A-R337A double-mutation slowed step 2 by 580-fold. These results fortify the case for the strictly conserved His-Arg-Arg triad as the enforcer of the 2'-PO4 end-specificity of fungal tRNA ligases and as a target for small molecule interdiction of fungal tRNA splicing.


Asunto(s)
Chaetomium , ARN Ligasa (ATP) , ARN Ligasa (ATP)/metabolismo , ARN Ligasa (ATP)/química , ARN Ligasa (ATP)/genética , Cinética , Chaetomium/enzimología , Chaetomium/genética , Chaetomium/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Fosfatos/metabolismo , Fosfatos/química , Modelos Moleculares , Adenosina Monofosfato/metabolismo , Adenosina Monofosfato/química , ARN de Hongos/metabolismo , ARN de Hongos/química , ARN de Hongos/genética , Especificidad por Sustrato , Empalme del ARN
19.
PLoS Pathog ; 20(5): e1012176, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38709846

RESUMEN

Magnaporthe AVRs and ToxB-like (MAX) effectors constitute a family of secreted virulence proteins in the fungus Pyricularia oryzae (syn. Magnaporthe oryzae), which causes blast disease on numerous cereals and grasses. In spite of high sequence divergence, MAX effectors share a common fold characterized by a ß-sandwich core stabilized by a conserved disulfide bond. In this study, we investigated the structural landscape and diversity within the MAX effector repertoire of P. oryzae. Combining experimental protein structure determination and in silico structure modeling we validated the presence of the conserved MAX effector core domain in 77 out of 94 groups of orthologs (OG) identified in a previous population genomic study. Four novel MAX effector structures determined by NMR were in remarkably good agreement with AlphaFold2 (AF2) predictions. Based on the comparison of the AF2-generated 3D models we propose a classification of the MAX effectors superfamily in 20 structural groups that vary in the canonical MAX fold, disulfide bond patterns, and additional secondary structures in N- and C-terminal extensions. About one-third of the MAX family members remain singletons, without strong structural relationship to other MAX effectors. Analysis of the surface properties of the AF2 MAX models also highlights the high variability within the MAX family at the structural level, potentially reflecting the wide diversity of their virulence functions and host targets.


Asunto(s)
Ascomicetos , Proteínas Fúngicas , Enfermedades de las Plantas , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Ascomicetos/genética , Ascomicetos/patogenicidad , Ascomicetos/metabolismo , Enfermedades de las Plantas/microbiología , Modelos Moleculares , Conformación Proteica , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/química , Factores de Virulencia/metabolismo , Secuencia de Aminoácidos
20.
Cell ; 147(7): 1446-57, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22196724

RESUMEN

The capture and utilization of light is an exquisitely evolved process. The single-component microbial opsins, although more limited than multicomponent cascades in processing, display unparalleled compactness and speed. Recent advances in understanding microbial opsins have been driven by molecular engineering for optogenetics and by comparative genomics. Here we provide a Primer on these light-activated ion channels and pumps, describe a group of opsins bridging prior categories, and explore the convergence of molecular engineering and genomic discovery for the utilization and understanding of these remarkable molecular machines.


Asunto(s)
Opsinas/genética , Opsinas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Opsinas/química , Filogenia , Ingeniería de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA