Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 869
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 84(4): 640-658.e10, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38266639

RESUMEN

The Bloom syndrome helicase BLM interacts with topoisomerase IIIα (TOP3A), RMI1, and RMI2 to form the BTR complex, which dissolves double Holliday junctions and DNA replication intermediates to promote sister chromatid disjunction before cell division. In its absence, structure-specific nucleases like the SMX complex (comprising SLX1-SLX4, MUS81-EME1, and XPF-ERCC1) can cleave joint DNA molecules instead, but cells deficient in both BTR and SMX are not viable. Here, we identify a negative genetic interaction between BLM loss and deficiency in the BRCA1-BARD1 tumor suppressor complex. We show that this is due to a previously overlooked role for BARD1 in recruiting SLX4 to resolve DNA intermediates left unprocessed by BLM in the preceding interphase. Consequently, cells with defective BLM and BRCA1-BARD1 accumulate catastrophic levels of chromosome breakage and micronucleation, leading to cell death. Thus, we reveal mechanistic insights into SLX4 recruitment to DNA lesions, with potential clinical implications for treating BRCA1-deficient tumors.


Asunto(s)
Proteínas de Unión al ADN , Recombinasas , Humanos , ADN/genética , Reparación del ADN , Replicación del ADN , ADN Cruciforme , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Recombinasas/genética , RecQ Helicasas/genética , RecQ Helicasas/metabolismo
2.
Mol Cell ; 84(9): 1684-1698.e9, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38593805

RESUMEN

The Bloom syndrome (BLM) helicase is critical for alternative lengthening of telomeres (ALT), a homology-directed repair (HDR)-mediated telomere maintenance mechanism that is prevalent in cancers of mesenchymal origin. The DNA substrates that BLM engages to direct telomere recombination during ALT remain unknown. Here, we determine that BLM helicase acts on lagging strand telomere intermediates that occur specifically in ALT-positive cells to assemble a replication-associated DNA damage response. Loss of ATRX was permissive for BLM localization to ALT telomeres in S and G2, commensurate with the appearance of telomere C-strand-specific single-stranded DNA (ssDNA). DNA2 nuclease deficiency increased 5'-flap formation in a BLM-dependent manner, while telomere C-strand, but not G-strand, nicks promoted ALT. These findings define the seminal events in the ALT DNA damage response, linking aberrant telomeric lagging strand DNA replication with a BLM-directed HDR mechanism that sustains telomere length in a subset of human cancers.


Asunto(s)
Daño del ADN , Replicación del ADN , RecQ Helicasas , Homeostasis del Telómero , Telómero , RecQ Helicasas/metabolismo , RecQ Helicasas/genética , Humanos , Telómero/metabolismo , Telómero/genética , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Proteína Nuclear Ligada al Cromosoma X/genética , Proteína Nuclear Ligada al Cromosoma X/metabolismo , ADN Helicasas/metabolismo , ADN Helicasas/genética , Síndrome de Bloom/genética , Síndrome de Bloom/metabolismo , Síndrome de Bloom/enzimología , Síndrome de Bloom/patología , Línea Celular Tumoral
3.
Annu Rev Biochem ; 85: 193-226, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27088880

RESUMEN

The repair of DNA by homologous recombination is an essential, efficient, and high-fidelity process that mends DNA lesions formed during cellular metabolism; these lesions include double-stranded DNA breaks, daughter-strand gaps, and DNA cross-links. Genetic defects in the homologous recombination pathway undermine genomic integrity and cause the accumulation of gross chromosomal abnormalities-including rearrangements, deletions, and aneuploidy-that contribute to cancer formation. Recombination proceeds through the formation of joint DNA molecules-homologously paired but metastable DNA intermediates that are processed by several alternative subpathways-making recombination a versatile and robust mechanism to repair damaged chromosomes. Modern biophysical methods make it possible to visualize, probe, and manipulate the individual molecules participating in the intermediate steps of recombination, revealing new details about the mechanics of genetic recombination. We review and discuss the individual stages of homologous recombination, focusing on common pathways in bacteria, yeast, and humans, and place particular emphasis on the molecular mechanisms illuminated by single-molecule methods.


Asunto(s)
ADN/genética , Escherichia coli/genética , Recombinación Genética , Reparación del ADN por Recombinación , Saccharomyces cerevisiae/genética , Aberraciones Cromosómicas , ADN/metabolismo , Daño del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Escherichia coli/metabolismo , Exodesoxirribonucleasa V/genética , Exodesoxirribonucleasa V/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Regulación de la Expresión Génica , Inestabilidad Genómica , Humanos , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Imagen Individual de Molécula
4.
Genes Dev ; 37(19-20): 913-928, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37932011

RESUMEN

Addiction to the WRN helicase is a unique vulnerability of human cancers with high levels of microsatellite instability (MSI-H). However, while prolonged loss of WRN ultimately leads to cell death, little is known about how MSI-H cancers initially respond to acute loss of WRN-knowledge that would be helpful for informing clinical development of WRN targeting therapy, predicting possible resistance mechanisms, and identifying useful biomarkers of successful WRN inhibition. Here, we report the construction of an inducible ligand-mediated degradation system in which the stability of endogenous WRN protein can be rapidly and specifically tuned, enabling us to track the complete sequence of cellular events elicited by acute loss of WRN function. We found that WRN degradation leads to immediate accrual of DNA damage in a replication-dependent manner that curiously did not robustly engage checkpoint mechanisms to halt DNA synthesis. As a result, WRN-degraded MSI-H cancer cells accumulate DNA damage across multiple replicative cycles and undergo successive rounds of increasingly aberrant mitoses, ultimately triggering cell death. Of potential therapeutic importance, we found no evidence of any generalized mechanism by which MSI-H cancers could adapt to near-complete loss of WRN. However, under conditions of partial WRN degradation, addition of low-dose ATR inhibitor significantly increased their combined efficacy to levels approaching full inactivation of WRN. Overall, our results provide the first comprehensive view of molecular events linking upstream inhibition of WRN to subsequent cell death and suggest that dual targeting of WRN and ATR might be a useful strategy for treating MSI-H cancers.


Asunto(s)
Replicación del ADN , Neoplasias , Humanos , Replicación del ADN/genética , ADN Helicasas/metabolismo , Repeticiones de Microsatélite , Daño del ADN , Neoplasias/tratamiento farmacológico , Neoplasias/genética , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Helicasa del Síndrome de Werner/genética , Helicasa del Síndrome de Werner/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo
5.
Mol Cell ; 81(4): 784-800.e8, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33412112

RESUMEN

DNA replication forks use multiple mechanisms to deal with replication stress, but how the choice of mechanisms is made is still poorly understood. Here, we show that CARM1 associates with replication forks and reduces fork speed independently of its methyltransferase activity. The speeding of replication forks in CARM1-deficient cells requires RECQ1, which resolves reversed forks, and RAD18, which promotes translesion synthesis. Loss of CARM1 reduces fork reversal and increases single-stranded DNA (ssDNA) gaps but allows cells to tolerate higher replication stress. Mechanistically, CARM1 interacts with PARP1 and promotes PARylation at replication forks. In vitro, CARM1 stimulates PARP1 activity by enhancing its DNA binding and acts jointly with HPF1 to activate PARP1. Thus, by stimulating PARP1, CARM1 slows replication forks and promotes the use of fork reversal in the stress response, revealing that CARM1 and PARP1 function as a regulatory module at forks to control fork speed and the choice of stress response mechanisms.


Asunto(s)
Roturas del ADN de Cadena Simple , Replicación del ADN , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Células HEK293 , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Proteína-Arginina N-Metiltransferasas/genética , RecQ Helicasas/genética , RecQ Helicasas/metabolismo
6.
Mol Cell ; 81(14): 2989-3006.e9, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34197737

RESUMEN

Stalled DNA replication fork restart after stress as orchestrated by ATR kinase, BLM helicase, and structure-specific nucleases enables replication, cell survival, and genome stability. Here we unveil human exonuclease V (EXO5) as an ATR-regulated DNA structure-specific nuclease and BLM partner for replication fork restart. We find that elevated EXO5 in tumors correlates with increased mutation loads and poor patient survival, suggesting that EXO5 upregulation has oncogenic potential. Structural, mechanistic, and mutational analyses of EXO5 and EXO5-DNA complexes reveal a single-stranded DNA binding channel with an adjacent ATR phosphorylation motif (T88Q89) that regulates EXO5 nuclease activity and BLM binding identified by mass spectrometric analysis. EXO5 phospho-mimetic mutant rescues the restart defect from EXO5 depletion that decreases fork progression, DNA damage repair, and cell survival. EXO5 depletion furthermore rescues survival of FANCA-deficient cells and indicates EXO5 functions epistatically with SMARCAL1 and BLM. Thus, an EXO5 axis connects ATR and BLM in directing replication fork restart.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Replicación del ADN/genética , ADN/genética , Exonucleasas/genética , Inestabilidad Genómica/genética , RecQ Helicasas/genética , Línea Celular , Línea Celular Tumoral , Daño del ADN/genética , ADN Helicasas/genética , Análisis Mutacional de ADN/métodos , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Células HEK293 , Células HeLa , Humanos , Mutación/genética , Oncogenes/genética , Fosforilación/genética , Regulación hacia Arriba/genética
7.
Mol Cell ; 81(5): 1027-1042.e4, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33453166

RESUMEN

Alternative lengthening of telomeres (ALT) is mediated by break-induced replication (BIR), but how BIR is regulated at telomeres is poorly understood. Here, we show that telomeric BIR is a self-perpetuating process. By tethering PML-IV to telomeres, we induced telomere clustering in ALT-associated PML bodies (APBs) and a POLD3-dependent ATR response at telomeres, showing that BIR generates replication stress. Ablation of BLM helicase activity in APBs abolishes telomere synthesis but causes multiple chromosome bridges between telomeres, revealing a function of BLM in processing inter-telomere BIR intermediates. Interestingly, the accumulation of BLM in APBs requires its own helicase activity and POLD3, suggesting that BIR triggers a feedforward loop to further recruit BLM. Enhancing BIR induces PIAS4-mediated TRF2 SUMOylation, and PIAS4 loss deprives APBs of repair proteins and compromises ALT telomere synthesis. Thus, a BLM-driven and PIAS4-mediated feedforward loop operates in APBs to perpetuate BIR, providing a critical mechanism to extend ALT telomeres.


Asunto(s)
Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Retroalimentación Fisiológica , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas Inhibidoras de STAT Activados/genética , ARN Helicasas/genética , Homeostasis del Telómero , Telómero/química , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Línea Celular , Línea Celular Tumoral , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/antagonistas & inhibidores , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Cuerpos de Inclusión Intranucleares/genética , Cuerpos de Inclusión Intranucleares/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/antagonistas & inhibidores , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas Inhibidoras de STAT Activados/antagonistas & inhibidores , Proteínas Inhibidoras de STAT Activados/metabolismo , ARN Helicasas/antagonistas & inhibidores , ARN Helicasas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Transducción de Señal , Sumoilación , Telómero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/genética
8.
EMBO J ; 43(14): 3027-3043, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38839993

RESUMEN

The Mec1/ATR kinase is crucial for genome stability, yet the mechanism by which it prevents gross chromosomal rearrangements (GCRs) remains unknown. Here we find that in cells with deficient Mec1 signaling, GCRs accumulate due to the deregulation of multiple steps in homologous recombination (HR). Mec1 primarily suppresses GCRs through its role in activating the canonical checkpoint kinase Rad53, which ensures the proper control of DNA end resection. Upon loss of Rad53 signaling and resection control, Mec1 becomes hyperactivated and triggers a salvage pathway in which the Sgs1 helicase is recruited to sites of DNA lesions via the 911-Dpb11 scaffolds and phosphorylated by Mec1 to favor heteroduplex rejection and limit HR-driven GCR accumulation. Fusing an ssDNA recognition domain to Sgs1 bypasses the requirement of Mec1 signaling for GCR suppression and nearly eliminates D-loop formation, thus preventing non-allelic recombination events. We propose that Mec1 regulates multiple steps of HR to prevent GCRs while ensuring balanced HR usage when needed for promoting tolerance to replication stress.


Asunto(s)
Recombinación Homóloga , Péptidos y Proteínas de Señalización Intracelular , Proteínas Serina-Treonina Quinasas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Quinasa de Punto de Control 2/metabolismo , Quinasa de Punto de Control 2/genética , RecQ Helicasas/metabolismo , RecQ Helicasas/genética , Transducción de Señal , Fosforilación , Aberraciones Cromosómicas , Reordenamiento Génico
9.
Mol Cell ; 77(2): 395-410.e3, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31759824

RESUMEN

The recovery of stalled replication forks depends on the controlled resection of nascent DNA and on the loading of cohesin. These processes operate in the context of nascent chromatin, but the impact of nucleosome structure on a fork restart remains poorly understood. Here, we show that the Mre11-Rad50-Xrs2 (MRX) complex acts together with the chromatin modifiers Gcn5 and Set1 and the histone remodelers RSC, Chd1, and Isw1 to promote chromatin remodeling at stalled forks. Increased chromatin accessibility facilitates the resection of nascent DNA by the Exo1 nuclease and the Sgs1 and Chl1 DNA helicases. Importantly, increased ssDNA promotes the recruitment of cohesin to arrested forks in a Scc2-Scc4-dependent manner. Altogether, these results indicate that MRX cooperates with chromatin modifiers to orchestrate the action of remodelers, nucleases, and DNA helicases, promoting the resection of nascent DNA and the loading of cohesin, two key processes involved in the recovery of arrested forks.


Asunto(s)
Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/genética , Replicación del ADN/genética , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Ensamble y Desensamble de Cromatina/genética , ADN Helicasas/genética , Nucleosomas/genética , RecQ Helicasas/genética , Saccharomyces cerevisiae/genética , Cohesinas
10.
Genes Dev ; 34(19-20): 1392-1405, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32883681

RESUMEN

TRF1 facilitates the replication of telomeric DNA in part by recruiting the BLM helicase, which can resolve G-quadruplexes on the lagging-strand template. Lagging-strand telomeres lacking TRF1 or BLM form fragile telomeres-structures that resemble common fragile sites (CFSs)-but how they are formed is not known. We report that analogous to CFSs, fragile telomeres in BLM-deficient cells involved double-strand break (DSB) formation, in this case by the SLX4/SLX1 nuclease. The DSBs were repaired by POLD3/POLD4-dependent break-induced replication (BIR), resulting in fragile telomeres containing conservatively replicated DNA. BIR also promoted fragile telomere formation in cells with FokI-induced telomeric DSBs and in alternative lengthening of telomeres (ALT) cells, which have spontaneous telomeric damage. BIR of telomeric DSBs competed with PARP1-, LIG3-, and XPF-dependent alternative nonhomologous end joining (alt-NHEJ), which did not generate fragile telomeres. Collectively, these findings indicate that fragile telomeres can arise from BIR-mediated repair of telomeric DSBs.


Asunto(s)
Sitios Frágiles del Cromosoma/genética , Roturas del ADN de Doble Cadena , Replicación del ADN , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Telómero/patología , Animales , Línea Celular , Células Cultivadas , Reparación del ADN , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Fibroblastos , Humanos , Ratones , Recombinasas/genética , Recombinasas/metabolismo
11.
Cell ; 149(2): 334-47, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22500800

RESUMEN

At the final step of homologous recombination, Holliday junction-containing joint molecules (JMs) are resolved to form crossover or noncrossover products. The enzymes responsible for JM resolution in vivo remain uncertain, but three distinct endonucleases capable of resolving JMs in vitro have been identified: Mus81-Mms4(EME1), Slx1-Slx4(BTBD12), and Yen1(GEN1). Using physical monitoring of recombination during budding yeast meiosis, we show that all three endonucleases are capable of promoting JM resolution in vivo. However, in mms4 slx4 yen1 triple mutants, JM resolution and crossing over occur efficiently. Paradoxically, crossing over in this background is strongly dependent on the Blooms helicase ortholog Sgs1, a component of a well-characterized anticrossover activity. Sgs1-dependent crossing over, but not JM resolution per se, also requires XPG family nuclease Exo1 and the MutLγ complex Mlh1-Mlh3. Thus, Sgs1, Exo1, and MutLγ together define a previously undescribed meiotic JM resolution pathway that produces the majority of crossovers in budding yeast and, by inference, in mammals.


Asunto(s)
Intercambio Genético , ADN Cruciforme , Meiosis , RecQ Helicasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Resolvasas de Unión Holliday/metabolismo , Mutación , RecQ Helicasas/genética , Proteínas de Saccharomyces cerevisiae/genética
12.
Mol Cell ; 75(3): 605-619.e6, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31255466

RESUMEN

Accurate DNA replication is essential to preserve genomic integrity and prevent chromosomal instability-associated diseases including cancer. Key to this process is the cells' ability to stabilize and restart stalled replication forks. Here, we show that the EXD2 nuclease is essential to this process. EXD2 recruitment to stressed forks suppresses their degradation by restraining excessive fork regression. Accordingly, EXD2 deficiency leads to fork collapse, hypersensitivity to replication inhibitors, and genomic instability. Impeding fork regression by inactivation of SMARCAL1 or removal of RECQ1's inhibition in EXD2-/- cells restores efficient fork restart and genome stability. Moreover, purified EXD2 efficiently processes substrates mimicking regressed forks. Thus, this work identifies a mechanism underpinned by EXD2's nuclease activity, by which cells balance fork regression with fork restoration to maintain genome stability. Interestingly, from a clinical perspective, we discover that EXD2's depletion is synthetic lethal with mutations in BRCA1/2, implying a non-redundant role in replication fork protection.


Asunto(s)
ADN Helicasas/genética , Replicación del ADN/genética , Exodesoxirribonucleasas/genética , RecQ Helicasas/genética , Proteína BRCA1/genética , Proteína BRCA2/genética , Inestabilidad Genómica/genética , Células HeLa , Humanos , Neoplasias/genética , Mutaciones Letales Sintéticas/genética
13.
Mol Cell ; 76(1): 27-43.e11, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31447390

RESUMEN

Cancer cells acquire unlimited proliferative capacity by either re-expressing telomerase or inducing alternative lengthening of telomeres (ALT), which relies on telomere recombination. Here, we show that ALT recombination requires coordinate regulation of the SMX and BTR complexes to ensure the appropriate balance of resolution and dissolution activities at recombining telomeres. Critical to this control is SLX4IP, which accumulates at ALT telomeres and interacts with SLX4, XPF, and BLM. Loss of SLX4IP increases ALT-related phenotypes, which is incompatible with cell growth following concomitant loss of SLX4. Inactivation of BLM is sufficient to rescue telomere aggregation and the synthetic growth defect in this context, suggesting that SLX4IP favors SMX-dependent resolution by antagonizing promiscuous BLM activity during ALT recombination. Finally, we show that SLX4IP is inactivated in a subset of ALT-positive osteosarcomas. Collectively, our findings uncover an SLX4IP-dependent regulatory mechanism critical for telomere maintenance in ALT cancer cells.


Asunto(s)
Neoplasias Óseas/enzimología , Proteínas Portadoras/metabolismo , Osteosarcoma/enzimología , RecQ Helicasas/metabolismo , Homeostasis del Telómero , Telómero/metabolismo , Animales , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Proteínas Portadoras/genética , Proliferación Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Ratones Noqueados , Ratones SCID , Osteosarcoma/genética , Osteosarcoma/patología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , RecQ Helicasas/genética , Recombinasas/genética , Recombinasas/metabolismo , Transducción de Señal , Telómero/genética , Telómero/patología
14.
Mol Cell ; 76(5): 699-711.e6, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31542296

RESUMEN

Rad52 is a key factor for homologous recombination (HR) in yeast. Rad52 helps assemble Rad51-ssDNA nucleoprotein filaments that catalyze DNA strand exchange, and it mediates single-strand DNA annealing. We find that Rad52 has an even earlier function in HR in restricting DNA double-stranded break ends resection that generates 3' single-stranded DNA (ssDNA) tails. In fission yeast, Exo1 is the primary resection nuclease, with the helicase Rqh1 playing a minor role. We demonstrate that the choice of two extensive resection pathways is regulated by Rad52. In rad52 cells, the resection rate increases from ∼3-5 kb/h up to ∼10-20 kb/h in an Rqh1-dependent manner, while Exo1 becomes dispensable. Budding yeast Rad52 similarly inhibits Sgs1-dependent resection. Single-molecule analysis with purified budding yeast proteins shows that Rad52 competes with Sgs1 for DNA end binding and inhibits Sgs1 translocation along DNA. These results identify a role for Rad52 in limiting ssDNA generated by end resection.


Asunto(s)
Roturas del ADN de Doble Cadena , Roturas del ADN de Cadena Simple , Reparación del ADN , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Regulación Fúngica de la Expresión Génica , Cinética , Mutación , Dominios Proteicos , Transporte de Proteínas , Proteína Recombinante y Reparadora de ADN Rad52/genética , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
15.
Mol Cell ; 73(6): 1255-1266.e4, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30737186

RESUMEN

Displacement loops (D-loops) are pivotal intermediates of homologous recombination (HR), a universal DNA double strand break (DSB) repair pathway. We developed a versatile assay for the physical detection of D-loops in vivo, which enabled studying the kinetics of their formation and defining the activities controlling their metabolism. Nascent D-loops are detected within 2 h of DSB formation and extended in a delayed fashion in a genetic system designed to preclude downstream repair steps. The majority of nascent D-loops are disrupted by two pathways: one supported by the Srs2 helicase and the other by the Mph1 helicase and the Sgs1-Top3-Rmi1 helicase-topoisomerase complex. Both pathways operate without significant overlap and are delineated by the Rad54 paralog Rdh54 in an ATPase-independent fashion. This study uncovers a layer of quality control of HR relying on nascent D-loop dynamics.


Asunto(s)
Daño del ADN , ADN de Hongos/genética , Reparación del ADN por Recombinación , Saccharomyces cerevisiae/genética , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN-Topoisomerasas/genética , ADN-Topoisomerasas/metabolismo , ADN de Hongos/química , ADN de Hongos/metabolismo , Cinética , Conformación de Ácido Nucleico , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad
16.
Mol Cell ; 75(1): 145-153.e5, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31153714

RESUMEN

Genetic recombination in all kingdoms of life initiates when helicases and nucleases process (resect) the free DNA ends to expose single-stranded DNA (ssDNA) overhangs. Resection regulation in bacteria is programmed by a DNA sequence, but a general mechanism limiting resection in eukaryotes has remained elusive. Using single-molecule imaging of reconstituted human DNA repair factors, we identify phosphorylated RPA (pRPA) as a negative resection regulator. Bloom's syndrome (BLM) helicase together with exonuclease 1 (EXO1) and DNA2 nucleases catalyze kilobase-length DNA resection on nucleosome-coated DNA. The resulting ssDNA is rapidly bound by RPA, which further stimulates DNA resection. RPA is phosphorylated during resection as part of the DNA damage response (DDR). Remarkably, pRPA inhibits DNA resection in cellular assays and in vitro via inhibition of BLM helicase. pRPA suppresses BLM initiation at DNA ends and promotes the intrinsic helicase strand-switching activity. These findings establish that pRPA provides a feedback loop between DNA resection and the DDR.


Asunto(s)
ADN de Cadena Simple/genética , Retroalimentación Fisiológica , RecQ Helicasas/genética , Proteínas Recombinantes de Fusión/genética , Proteína de Replicación A/genética , Sitios de Unión , ADN Helicasas/genética , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , ADN de Cadena Simple/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Regulación de la Expresión Génica , Recombinación Homóloga , Humanos , Microscopía Fluorescente , Nucleosomas/química , Nucleosomas/metabolismo , Oligopéptidos/genética , Oligopéptidos/metabolismo , Fosforilación , Unión Proteica , RecQ Helicasas/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteína de Replicación A/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Imagen Individual de Molécula
17.
Mol Cell ; 70(1): 9-20.e6, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625041

RESUMEN

Meiotic recombination is essential for fertility and allelic shuffling. Canonical recombination models fail to capture the observed complexity of meiotic recombinants. Here, by combining genome-wide meiotic heteroduplex DNA patterns with meiotic DNA double-strand break (DSB) sites, we show that part of this complexity results from frequent template switching during synthesis-dependent strand annealing that yields noncrossovers and from branch migration of double Holliday junction (dHJ)-containing intermediates that mainly yield crossovers. This complexity also results from asymmetric positioning of crossover intermediates relative to the initiating DSB and Msh2-independent conversions promoted by the suspected dHJ resolvase Mlh1-3 as well as Exo1 and Sgs1. Finally, we show that dHJ resolution is biased toward cleavage of the pair of strands containing newly synthesized DNA near the junctions and that this bias can be decoupled from the crossover-biased dHJ resolution. These properties are likely conserved in eukaryotes containing ZMM proteins, which includes mammals.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Cruciforme , ADN de Hongos/genética , Meiosis , Ácidos Nucleicos Heterodúplex/genética , Recombinación Genética , Saccharomyces cerevisiae/genética , ADN de Hongos/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Homólogo 1 de la Proteína MutL/genética , Homólogo 1 de la Proteína MutL/metabolismo , Proteínas MutL/genética , Proteínas MutL/metabolismo , Conformación de Ácido Nucleico , Ácidos Nucleicos Heterodúplex/metabolismo , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Nucleic Acids Res ; 52(13): 7401-7413, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38869071

RESUMEN

Homologous recombination (HR) is a key process for repairing DNA double strand breaks and for promoting genetic diversity. However, HR occurs unevenly across the genome, and certain genomic features can influence its activity. One such feature is the presence of guanine quadruplexes (G4s), stable secondary structures widely distributed throughout the genome. These G4s play essential roles in gene transcription and genome stability regulation. Especially, elevated G4 levels in cells deficient in the Bloom syndrome helicase (BLM) significantly enhance HR at G4 sites, potentially threatening genome stability. Here, we investigated the role of G4-binding protein Yin Yang-1 (YY1) in modulating HR at G4 sites in human cells. Our results show that YY1's binding to G4 structures suppresses sister chromatid exchange after BLM knockdown, and YY1's chromatin occupancy negatively correlates with the overall HR rate observed across the genome. By limiting RAD51 homolog 1 (RAD51) access, YY1 preferentially binds to essential genomic regions, shielding them from excessive HR. Our findings unveil a novel role of YY1-G4 interaction, revealing novel insights into cellular mechanisms involved in HR regulation.


Asunto(s)
G-Cuádruplex , Recombinación Homóloga , Recombinasa Rad51 , Intercambio de Cromátides Hermanas , Factor de Transcripción YY1 , Humanos , Factor de Transcripción YY1/metabolismo , Factor de Transcripción YY1/genética , Recombinación Homóloga/genética , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Intercambio de Cromátides Hermanas/genética , RecQ Helicasas/metabolismo , RecQ Helicasas/genética , Cromatina/metabolismo , Cromatina/genética , Roturas del ADN de Doble Cadena , Inestabilidad Genómica/genética
19.
Nucleic Acids Res ; 52(16): 9695-9709, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39082275

RESUMEN

Inappropriate homology-directed repair (HDR) of telomeres results in catastrophic telomere loss and aberrant chromosome fusions, leading to genome instability. We have previously shown that the TRF2-RAP1 heterodimer protects telomeres from engaging in aberrant telomere HDR. Cells lacking the basic domain of TRF2 and functional RAP1 display HDR-mediated telomere clustering, resulting in the formation of ultrabright telomeres (UTs) and massive chromosome fusions. Using purified proteins, we uncover three distinct molecular pathways that the TRF2-RAP1 heterodimer utilizes to protect telomeres from engaging in aberrant HDR. We show mechanistically that TRF2-RAP1 inhibits RAD51-initiated telomeric D-loop formation. Both the TRF2 basic domain and RAP1-binding to TRF2 are required to block RAD51-mediated homology search. TRF2 recruits the BLM helicase to telomeres through its TRFH domain to promote BLM-mediated unwinding of telomere D-loops. In addition, TRF2-RAP1 inhibits BLM-DNA2-mediated 5' telomere end resection, preventing the generation of 3' single-stranded telomere overhangs necessary for RAD51-dependent HDR. Importantly, cells expressing BLM mutants unable to interact with TRF2 accumulate telomere D-loops and UTs. Our findings uncover distinct molecular mechanisms coordinated by TRF2-RAP1 to protect telomeres from engaging in aberrant HDR.


Asunto(s)
Recombinasa Rad51 , RecQ Helicasas , Reparación del ADN por Recombinación , Complejo Shelterina , Proteínas de Unión a Telómeros , Telómero , Proteína 2 de Unión a Repeticiones Teloméricas , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Recombinasa Rad51/metabolismo , RecQ Helicasas/metabolismo , RecQ Helicasas/genética , Telómero/metabolismo , Complejo Shelterina/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Proteínas de Unión a Telómeros/genética , Humanos , Unión Proteica , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética
20.
EMBO J ; 40(10): e104566, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33764556

RESUMEN

The Mec1/ATR kinase is crucial for genome maintenance in response to a range of genotoxic insults, but it remains unclear how it promotes context-dependent signaling and DNA repair. Using phosphoproteomic analyses, we uncovered a distinctive Mec1/ATR signaling response triggered by extensive nucleolytic processing (resection) of DNA ends. Budding yeast cells lacking Rad9, a checkpoint adaptor and an inhibitor of resection, exhibit a selective increase in Mec1-dependent phosphorylation of proteins associated with single-strand DNA (ssDNA) transactions, including the ssDNA-binding protein Rfa2, the translocase/ubiquitin ligase Uls1, and the Sgs1-Top3-Rmi1 (STR) complex that regulates homologous recombination (HR). Extensive Mec1-dependent phosphorylation of the STR complex, mostly on the Sgs1 helicase subunit, promotes an interaction between STR and the DNA repair scaffolding protein Dpb11. Fusion of Sgs1 to phosphopeptide-binding domains of Dpb11 strongly impairs HR-mediated repair, supporting a model whereby Mec1 signaling regulates STR upon hyper-resection to influence recombination outcomes. Overall, the identification of a distinct Mec1 signaling response triggered by hyper-resection highlights the multi-faceted action of this kinase in the coordination of checkpoint signaling and HR-mediated DNA repair.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Reparación del ADN/genética , Reparación del ADN/fisiología , Recombinación Homóloga/genética , Recombinación Homóloga/fisiología , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/genética , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA