Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47.258
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Biochem ; 93(1): 189-210, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38768392

RESUMEN

During the last ten years, developments in cryo-electron microscopy have transformed our understanding of eukaryotic ribosome assembly. As a result, the field has advanced from a list of the vast array of ribosome assembly factors toward an emerging molecular movie in which individual frames are represented by structures of stable ribosome assembly intermediates with complementary biochemical and genetic data. In this review, we discuss the mechanisms driving the assembly of yeast and human small and large ribosomal subunits. A particular emphasis is placed on the most recent findings that illustrate key concepts of ribosome assembly, such as folding of preribosomal RNA, the enforced chronology of assembly, enzyme-mediated irreversible transitions, and proofreading of preribosomal particles.


Asunto(s)
Microscopía por Crioelectrón , Proteínas Ribosómicas , Ribosomas , Humanos , Ribosomas/metabolismo , Ribosomas/ultraestructura , Ribosomas/química , Ribosomas/genética , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , ARN Ribosómico/metabolismo , ARN Ribosómico/química , ARN Ribosómico/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Modelos Moleculares , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Pliegue del ARN , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/ultraestructura , Animales
2.
Cell ; 187(18): 4824-4826, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39241742

RESUMEN

Epigenetic inheritance of heterochromatin requires transfer of parental H3-H4 tetramers to both daughter duplexes during replication. Three recent papers exploit yeast genetics coupled to inheritance assays and AlphaFold2-multimer predictions coupled to biochemistry to reveal that a replisome component (Mrc1/CLASPIN) is an H3-H4 tetramer chaperone important for parental histone transfer to daughters.


Asunto(s)
Replicación del ADN , Aprendizaje Profundo , Histonas , Saccharomyces cerevisiae , Histonas/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Heterocromatina/metabolismo , Epigénesis Genética
3.
Cell ; 187(6): 1490-1507.e21, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38452761

RESUMEN

Cell cycle progression relies on coordinated changes in the composition and subcellular localization of the proteome. By applying two distinct convolutional neural networks on images of millions of live yeast cells, we resolved proteome-level dynamics in both concentration and localization during the cell cycle, with resolution of ∼20 subcellular localization classes. We show that a quarter of the proteome displays cell cycle periodicity, with proteins tending to be controlled either at the level of localization or concentration, but not both. Distinct levels of protein regulation are preferentially utilized for different aspects of the cell cycle, with changes in protein concentration being mostly involved in cell cycle control and changes in protein localization in the biophysical implementation of the cell cycle program. We present a resource for exploring global proteome dynamics during the cell cycle, which will aid in understanding a fundamental biological process at a systems level.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Células Eucariotas/metabolismo , Redes Neurales de la Computación , Proteoma/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Cell ; 187(17): 4656-4673.e28, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-38942013

RESUMEN

The ability of proteins and RNA to coalesce into phase-separated assemblies, such as the nucleolus and stress granules, is a basic principle in organizing membraneless cellular compartments. While the constituents of biomolecular condensates are generally well documented, the mechanisms underlying their formation under stress are only partially understood. Here, we show in yeast that covalent modification with the ubiquitin-like modifier Urm1 promotes the phase separation of a wide range of proteins. We find that the drop in cellular pH induced by stress triggers Urm1 self-association and its interaction with both target proteins and the Urm1-conjugating enzyme Uba4. Urmylation of stress-sensitive proteins promotes their deposition into stress granules and nuclear condensates. Yeast cells lacking Urm1 exhibit condensate defects that manifest in reduced stress resilience. We propose that Urm1 acts as a reversible molecular "adhesive" to drive protective phase separation of functionally critical proteins under cellular stress.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Estrés Fisiológico , Ubiquitinas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitinas/metabolismo , Condensados Biomoleculares/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Concentración de Iones de Hidrógeno , Gránulos de Estrés/metabolismo
5.
Cell ; 187(19): 5267-5281.e13, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39127037

RESUMEN

The nuclear pore complex (NPC) is the sole mediator of nucleocytoplasmic transport. Despite great advances in understanding its conserved core architecture, the peripheral regions can exhibit considerable variation within and between species. One such structure is the cage-like nuclear basket. Despite its crucial roles in mRNA surveillance and chromatin organization, an architectural understanding has remained elusive. Using in-cell cryo-electron tomography and subtomogram analysis, we explored the NPC's structural variations and the nuclear basket across fungi (yeast; S. cerevisiae), mammals (mouse; M. musculus), and protozoa (T. gondii). Using integrative structural modeling, we computed a model of the basket in yeast and mammals that revealed how a hub of nucleoporins (Nups) in the nuclear ring binds to basket-forming Mlp/Tpr proteins: the coiled-coil domains of Mlp/Tpr form the struts of the basket, while their unstructured termini constitute the basket distal densities, which potentially serve as a docking site for mRNA preprocessing before nucleocytoplasmic transport.


Asunto(s)
Transporte Activo de Núcleo Celular , Proteínas de Complejo Poro Nuclear , Poro Nuclear , Saccharomyces cerevisiae , Animales , Poro Nuclear/metabolismo , Poro Nuclear/ultraestructura , Poro Nuclear/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/química , Ratones , Núcleo Celular/metabolismo , Toxoplasma/metabolismo , Toxoplasma/ultraestructura , Microscopía por Crioelectrón , ARN Mensajero/metabolismo , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestructura
6.
Cell ; 187(13): 3303-3318.e18, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38906101

RESUMEN

Gamete formation and subsequent offspring development often involve extended phases of suspended cellular development or even dormancy. How cells adapt to recover and resume growth remains poorly understood. Here, we visualized budding yeast cells undergoing meiosis by cryo-electron tomography (cryoET) and discovered elaborate filamentous assemblies decorating the nucleus, cytoplasm, and mitochondria. To determine filament composition, we developed a "filament identification" (FilamentID) workflow that combines multiscale cryoET/cryo-electron microscopy (cryoEM) analyses of partially lysed cells or organelles. FilamentID identified the mitochondrial filaments as being composed of the conserved aldehyde dehydrogenase Ald4ALDH2 and the nucleoplasmic/cytoplasmic filaments as consisting of acetyl-coenzyme A (CoA) synthetase Acs1ACSS2. Structural characterization further revealed the mechanism underlying polymerization and enabled us to genetically perturb filament formation. Acs1 polymerization facilitates the recovery of chronologically aged spores and, more generally, the cell cycle re-entry of starved cells. FilamentID is broadly applicable to characterize filaments of unknown identity in diverse cellular contexts.


Asunto(s)
Gametogénesis , Mitocondrias , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Aldehído Deshidrogenasa/metabolismo , Aldehído Deshidrogenasa/química , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Coenzima A Ligasas/metabolismo , Microscopía por Crioelectrón , Citoplasma/metabolismo , Tomografía con Microscopio Electrónico , Meiosis , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Esporas Fúngicas/metabolismo , Modelos Moleculares , Estructura Cuaternaria de Proteína
7.
Cell ; 187(18): 5010-5028.e24, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39094570

RESUMEN

Faithful transfer of parental histones to newly replicated daughter DNA strands is critical for inheritance of epigenetic states. Although replication proteins that facilitate parental histone transfer have been identified, how intact histone H3-H4 tetramers travel from the front to the back of the replication fork remains unknown. Here, we use AlphaFold-Multimer structural predictions combined with biochemical and genetic approaches to identify the Mrc1/CLASPIN subunit of the replisome as a histone chaperone. Mrc1 contains a conserved histone-binding domain that forms a brace around the H3-H4 tetramer mimicking nucleosomal DNA and H2A-H2B histones, is required for heterochromatin inheritance, and promotes parental histone recycling during replication. We further identify binding sites for the FACT histone chaperone in Swi1/TIMELESS and DNA polymerase α that are required for heterochromatin inheritance. We propose that Mrc1, in concert with FACT acting as a mobile co-chaperone, coordinates the distribution of parental histones to newly replicated DNA.


Asunto(s)
Replicación del ADN , Epigénesis Genética , Heterocromatina , Histonas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Histonas/metabolismo , Heterocromatina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Proteínas del Grupo de Alta Movilidad/genética , Factores de Elongación Transcripcional/metabolismo , Factores de Elongación Transcripcional/genética , Chaperonas de Histonas/metabolismo , Chaperonas Moleculares/metabolismo , ADN Polimerasa I/metabolismo , ADN Polimerasa I/genética
8.
Annu Rev Biochem ; 92: 227-245, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37001134

RESUMEN

Messenger RNA (mRNA) stability and translational efficiency are two crucial aspects of the post-transcriptional process that profoundly impact protein production in a cell. While it is widely known that ribosomes produce proteins, studies during the past decade have surprisingly revealed that ribosomes also control mRNA stability in a codon-dependent manner, a process referred to as codon optimality. Therefore, codons, the three-nucleotide words read by the ribosome, have a potent effect on mRNA stability and provide cis-regulatory information that extends beyond the amino acids they encode. While the codon optimality molecular mechanism is still unclear, the translation elongation rate appears to trigger mRNA decay. Thus, transfer RNAs emerge as potential master gene regulators affecting mRNA stability. Furthermore, while few factors related to codon optimality have been identified in yeast, the orthologous genes in vertebrates do not necessary share the same functions. Here, we discuss codon optimality findings and gene regulation layers related to codon composition in different eukaryotic species.


Asunto(s)
Biosíntesis de Proteínas , Proteínas , Animales , ARN Mensajero/metabolismo , Codón/genética , Proteínas/genética , Estabilidad del ARN , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
9.
Annu Rev Biochem ; 92: 199-225, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37001138

RESUMEN

Formation of the 3' end of a eukaryotic mRNA is a key step in the production of a mature transcript. This process is mediated by a number of protein factors that cleave the pre-mRNA, add a poly(A) tail, and regulate transcription by protein dephosphorylation. Cleavage and polyadenylation specificity factor (CPSF) in humans, or cleavage and polyadenylation factor (CPF) in yeast, coordinates these enzymatic activities with each other, with RNA recognition, and with transcription. The site of pre-mRNA cleavage can strongly influence the translation, stability, and localization of the mRNA. Hence, cleavage site selection is highly regulated. The length of the poly(A) tail is also controlled to ensure that every transcript has a similar tail when it is exported from the nucleus. In this review, we summarize new mechanistic insights into mRNA 3'-end processing obtained through structural studies and biochemical reconstitution and outline outstanding questions in the field.


Asunto(s)
Precursores del ARN , Factores de Escisión y Poliadenilación de ARNm , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Expresión Génica
10.
Cell ; 186(1): 8-9, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608660

RESUMEN

Much of our foundational knowledge of cellular biology comes from studies in budding yeast, often described as a simple unicellular eukaryotic model. In this issue of Cell, Correia-Melo et al. describe an unappreciated feature of yeast biology involving intra-cellular metabolite exchange, where cells adapt and respond as part of a community, and go on to show that sharing of resources linked to methionine metabolism enhances longevity of cooperating cells.


Asunto(s)
Longevidad , Saccharomycetales , Saccharomyces cerevisiae/metabolismo , Células Eucariotas , Citoplasma
11.
Cell ; 186(9): 2018-2034.e21, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37080200

RESUMEN

Functional genomic strategies have become fundamental for annotating gene function and regulatory networks. Here, we combined functional genomics with proteomics by quantifying protein abundances in a genome-scale knockout library in Saccharomyces cerevisiae, using data-independent acquisition mass spectrometry. We find that global protein expression is driven by a complex interplay of (1) general biological properties, including translation rate, protein turnover, the formation of protein complexes, growth rate, and genome architecture, followed by (2) functional properties, such as the connectivity of a protein in genetic, metabolic, and physical interaction networks. Moreover, we show that functional proteomics complements current gene annotation strategies through the assessment of proteome profile similarity, protein covariation, and reverse proteome profiling. Thus, our study reveals principles that govern protein expression and provides a genome-spanning resource for functional annotation.


Asunto(s)
Proteoma , Proteómica , Proteómica/métodos , Proteoma/metabolismo , Genómica/métodos , Genoma , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
12.
Cell ; 186(1): 63-79.e21, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608659

RESUMEN

Metabolism is deeply intertwined with aging. Effects of metabolic interventions on aging have been explained with intracellular metabolism, growth control, and signaling. Studying chronological aging in yeast, we reveal a so far overlooked metabolic property that influences aging via the exchange of metabolites. We observed that metabolites exported by young cells are re-imported by chronologically aging cells, resulting in cross-generational metabolic interactions. Then, we used self-establishing metabolically cooperating communities (SeMeCo) as a tool to increase metabolite exchange and observed significant lifespan extensions. The longevity of the SeMeCo was attributable to metabolic reconfigurations in methionine consumer cells. These obtained a more glycolytic metabolism and increased the export of protective metabolites that in turn extended the lifespan of cells that supplied them with methionine. Our results establish metabolite exchange interactions as a determinant of cellular aging and show that metabolically cooperating cells can shape the metabolic environment to extend their lifespan.


Asunto(s)
Longevidad , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Metionina/metabolismo , Transducción de Señal
13.
Cell ; 186(23): 5054-5067.e16, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37949058

RESUMEN

Fatty acids (FAs) play a central metabolic role in living cells as constituents of membranes, cellular energy reserves, and second messenger precursors. A 2.6 MDa FA synthase (FAS), where the enzymatic reactions and structures are known, is responsible for FA biosynthesis in yeast. Essential in the yeast FAS catalytic cycle is the acyl carrier protein (ACP) that actively shuttles substrates, biosynthetic intermediates, and products from one active site to another. We resolve the S. cerevisiae FAS structure at 1.9 Å, elucidating cofactors and water networks involved in their recognition. Structural snapshots of ACP domains bound to various enzymatic domains allow the reconstruction of a full yeast FA biosynthesis cycle. The structural information suggests that each FAS functional unit could accommodate exogenous proteins to incorporate various enzymatic activities, and we show proof-of-concept experiments where ectopic proteins are used to modulate FAS product profiles.


Asunto(s)
Proteína Transportadora de Acilo , Ácidos Grasos , Saccharomyces cerevisiae , Proteína Transportadora de Acilo/química , Dominio Catalítico , Ácidos Grasos/biosíntesis , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Cell ; 186(4): 837-849.e11, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36693376

RESUMEN

Concomitant with DNA replication, the chromosomal cohesin complex establishes cohesion between newly replicated sister chromatids. Cohesion establishment requires acetylation of conserved cohesin lysine residues by Eco1 acetyltransferase. Here, we explore how cohesin acetylation is linked to DNA replication. Biochemical reconstitution of replication-coupled cohesin acetylation reveals that transient DNA structures, which form during DNA replication, control the acetylation reaction. As polymerases complete lagging strand replication, strand displacement synthesis produces DNA flaps that are trimmed to result in nicked double-stranded DNA. Both flaps and nicks stimulate cohesin acetylation, while subsequent nick ligation to complete Okazaki fragment maturation terminates the acetylation reaction. A flapped or nicked DNA substrate constitutes a transient molecular clue that directs cohesin acetylation to a window behind the replication fork, next to where cohesin likely entraps both sister chromatids. Our results provide an explanation for how DNA replication is linked to sister chromatid cohesion establishment.


Asunto(s)
Cromátides , Proteínas de Saccharomyces cerevisiae , Cromátides/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Replicación del ADN , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN , Acetiltransferasas/genética , Acetiltransferasas/metabolismo
15.
Cell ; 186(4): 748-763.e15, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36758548

RESUMEN

Although many prokaryotes have glycolysis alternatives, it's considered as the only energy-generating glucose catabolic pathway in eukaryotes. Here, we managed to create a hybrid-glycolysis yeast. Subsequently, we identified an inositol pyrophosphatase encoded by OCA5 that could regulate glycolysis and respiration by adjusting 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7) levels. 5-InsP7 levels could regulate the expression of genes involved in glycolysis and respiration, representing a global mechanism that could sense ATP levels and regulate central carbon metabolism. The hybrid-glycolysis yeast did not produce ethanol during growth under excess glucose and could produce 2.68 g/L free fatty acids, which is the highest reported production in shake flask of Saccharomyces cerevisiae. This study demonstrated the significance of hybrid-glycolysis yeast and determined Oca5 as an inositol pyrophosphatase controlling the balance between glycolysis and respiration, which may shed light on the role of inositol pyrophosphates in regulating eukaryotic metabolism.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Difosfatos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fosfatos de Inositol/genética , Fosfatos de Inositol/metabolismo , Glucólisis/genética , Respiración , Pirofosfatasas/metabolismo , Glucosa/metabolismo
16.
Annu Rev Biochem ; 91: 157-181, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35303790

RESUMEN

Covalent DNA-protein crosslinks (DPCs) are pervasive DNA lesions that interfere with essential chromatin processes such as transcription or replication. This review strives to provide an overview of the sources and principles of cellular DPC formation. DPCs are caused by endogenous reactive metabolites and various chemotherapeutic agents. However, in certain conditions DPCs also arise physiologically in cells. We discuss the cellular mechanisms resolving these threats to genomic integrity. Detection and repair of DPCs require not only the action of canonical DNA repair pathways but also the activity of specialized proteolytic enzymes-including proteases of the SPRTN/Wss1 family-to degrade the crosslinked protein. Loss of DPC repair capacity has dramatic consequences, ranging from genome instability in yeast and worms to cancer predisposition and premature aging in mice and humans.


Asunto(s)
Reparación del ADN , Proteínas de Saccharomyces cerevisiae , Animales , ADN/genética , ADN/metabolismo , Daño del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Ratones , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Annu Rev Biochem ; 91: 679-703, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35287471

RESUMEN

Mitochondria are central to energy production, metabolism and signaling, and apoptosis. To make new mitochondria from preexisting mitochondria, the cell needs to import mitochondrial proteins from the cytosol into the mitochondria with the aid of translocators in the mitochondrial membranes. The translocase of the outer membrane (TOM) complex, an outer membrane translocator, functions as an entry gate for most mitochondrial proteins. Although high-resolution structures of the receptor subunits of the TOM complex were deposited in the early 2000s, those of entire TOM complexes became available only in 2019. The structural details of these TOM complexes, consisting of the dimer of the ß-barrel import channel Tom40 and four α-helical membrane proteins, revealed the presence of several distinct paths and exits for the translocation of over 1,000 different mitochondrial precursor proteins. High-resolution structures of TOM complexes now open up a new era of studies on the structures, functions, and dynamics of the mitochondrial import system.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Proteínas Portadoras/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Cell ; 185(24): 4474-4487.e17, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36334590

RESUMEN

How the eukaryotic 43S preinitiation complex scans along the 5' untranslated region (5' UTR) of a capped mRNA to locate the correct start codon remains elusive. Here, we directly track yeast 43S-mRNA binding, scanning, and 60S subunit joining by real-time single-molecule fluorescence spectroscopy. 43S engagement with mRNA occurs through a slow, ATP-dependent process driven by multiple initiation factors including the helicase eIF4A. Once engaged, 43S scanning occurs rapidly and directionally at ∼100 nucleotides per second, independent of multiple cycles of ATP hydrolysis by RNA helicases post ribosomal loading. Scanning ribosomes can proceed through RNA secondary structures, but 5' UTR hairpin sequences near start codons drive scanning ribosomes at start codons backward in the 5' direction, requiring rescanning to arrive once more at a start codon. Direct observation of scanning ribosomes provides a mechanistic framework for translational regulation by 5' UTR structures and upstream near-cognate start codons.


Asunto(s)
Ribosomas , Saccharomyces cerevisiae , Codón Iniciador/metabolismo , ARN Mensajero/metabolismo , Regiones no Traducidas 5' , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Biosíntesis de Proteínas
19.
Cell ; 184(15): 4064-4072.e28, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34133942

RESUMEN

Transcription initiation requires assembly of the RNA polymerase II (Pol II) pre-initiation complex (PIC) and opening of promoter DNA. Here, we present the long-sought high-resolution structure of the yeast PIC and define the mechanism of initial DNA opening. We trap the PIC in an intermediate state that contains half a turn of open DNA located 30-35 base pairs downstream of the TATA box. The initially opened DNA region is flanked and stabilized by the polymerase "clamp head loop" and the TFIIF "charged region" that both contribute to promoter-initiated transcription. TFIIE facilitates initiation by buttressing the clamp head loop and by regulating the TFIIH translocase. The initial DNA bubble is then extended in the upstream direction, leading to the open promoter complex and enabling start-site scanning and RNA synthesis. This unique mechanism of DNA opening may permit more intricate regulation than in the Pol I and Pol III systems.


Asunto(s)
ADN/química , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/metabolismo , Iniciación de la Transcripción Genética , Secuencia de Aminoácidos , Microscopía por Crioelectrón , ADN/ultraestructura , Modelos Biológicos , Modelos Moleculares , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , ARN Polimerasa II/ultraestructura , Eliminación de Secuencia , Factor de Transcripción TFIIH , Factores de Transcripción TFII/metabolismo
20.
Cell ; 184(23): 5824-5837.e15, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34672953

RESUMEN

The human mitochondrial genome encodes thirteen core subunits of the oxidative phosphorylation system, and defects in mitochondrial gene expression lead to severe neuromuscular disorders. However, the mechanisms of mitochondrial gene expression remain poorly understood due to a lack of experimental approaches to analyze these processes. Here, we present an in vitro system to silence translation in purified mitochondria. In vitro import of chemically synthesized precursor-morpholino hybrids allows us to target translation of individual mitochondrial mRNAs. By applying this approach, we conclude that the bicistronic, overlapping ATP8/ATP6 transcript is translated through a single ribosome/mRNA engagement. We show that recruitment of COX1 assembly factors to translating ribosomes depends on nascent chain formation. By defining mRNA-specific interactomes for COX1 and COX2, we reveal an unexpected function of the cytosolic oncofetal IGF2BP1, an RNA-binding protein, in mitochondrial translation. Our data provide insight into mitochondrial translation and innovative strategies to investigate mitochondrial gene expression.


Asunto(s)
Regulación de la Expresión Génica , Silenciador del Gen , Genes Mitocondriales , Transporte de Electrón , Complejo IV de Transporte de Electrones/genética , Células HEK293 , Humanos , Proteínas Mitocondriales/metabolismo , Oligonucleótidos/química , Fosforilación Oxidativa , Biosíntesis de Proteínas , Subunidades de Proteína/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mitocondrial/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA