Your browser doesn't support javascript.

BVS del Sindicato Médico del Uruguay

Portal de Búsqueda de la BVS

Home > Búsqueda > ()
XML
Imprimir Exportar

Formato de exportación:

Exportar

Email
Adicionar mas contactos
| |

A Bayesian classifier for differentiating benign versus malignant thyroid nodules using sonographic features.

Liu, Yueyi I; Kamaya, Aya; Desser, Terry S; Rubin, Daniel L.
AMIA Annu Symp Proc ; : 419-23, 2008 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-18999209
Thyroid nodules are a common, yet challenging clinical problem. The vast majority of these nodules are benign; however, deciding which nodule should undergo biopsy is difficult because the imaging appearance of benign and malignant thyroid nodules overlap. High resolution ultrasound is the primary imaging modality for evaluating thyroid nodules. Many sonographic features have been studied individually as predictors for thyroid malignancy. There has been little work to create predictive models that combine multiple predictors, both imaging features and demographic factors. We have created a Bayesian classifier to predict whether a thyroid nodule is benign or malignant using sonographic and demographic findings. Our classifier performed similar to or slightly better than experienced radiologists when evaluated using 41 thyroid nodules with known pathologic diagnosis. This classifier could be helpful in providing practitioners an objective basis for deciding whether to biopsy suspicious thyroid nodules.