Your browser doesn't support javascript.

BVS del Sindicato Médico del Uruguay

Portal de Búsqueda de la BVS

Home > Búsqueda > ()
Imprimir Exportar

Formato de exportación:


Adicionar mas contactos
| |

Evolution of learning and levels of selection: a lesson from avian parent-offspring communication.

Lotem, Arnon; Biran-Yoeli, Inbar.
Theor Popul Biol ; 91: 58-74, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24211682
In recent years, it has become increasingly clear that the evolution of behavior may be better understood as the evolution of the learning mechanisms that produce it, and that such mechanisms should be modeled and tested explicitly. However, this approach, which has recently been applied to animal foraging and decision-making, has rarely been applied to the social and communicative behaviors that are likely to operate in complex social environments and be subject to multi-level selection. Here we use genetic, agent-based evolutionary simulations to explore how learning mechanisms may evolve to adjust the level of nestling begging (offspring signaling of need), and to examine the possible consequences of this process for parent-offspring conflict and communication. In doing so, we also provide the first step-by-step dynamic model of parent-offspring communication. The results confirm several previous theoretical predictions and demonstrate three novel phenomena. First, negatively frequency-dependent group-level selection can generate a stable polymorphism of learning strategies and parental responses. Second, while conventional reinforcement learning models fail to cope successfully with family dynamics at the nest, a newly developed learning model (incorporating behaviors that are consistent with recent experimental results on learning in nestling begging) produced effective learning, which evolved successfully. Third, while kin-selection affects the frequency of the different learning genes, its impact on begging slope and intensity was unexpectedly negligible, demonstrating that evolution is a complex process, and showing that the effect of kin-selection on behaviors that are shaped by learning may not be predicted by simple application of Hamilton's rule.