Your browser doesn't support javascript.

BVS del Sindicato Médico del Uruguay

Portal de Búsqueda de la BVS

Home > Búsqueda > ()
Imprimir Exportar

Formato de exportación:


Adicionar mas contactos
| |

Host triacylglycerols shape the lipidome of intracellular trypanosomes and modulate their growth.

Gazos-Lopes, Felipe; Martin, Jessica L; Dumoulin, Peter C; Burleigh, Barbara A.
PLoS Pathog ; 13(12): e1006800, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29281741
Intracellular infection and multi-organ colonization by the protozoan parasite, Trypanosoma cruzi, underlie the complex etiology of human Chagas disease. While T. cruzi can establish cytosolic residence in a broad range of mammalian cell types, the molecular mechanisms governing this process remain poorly understood. Despite the anticipated capacity for fatty acid synthesis in this parasite, recent observations suggest that intracellular T. cruzi amastigotes may rely on host fatty acid metabolism to support infection. To investigate this prediction, it was necessary to establish baseline lipidome information for the mammalian-infective stages of T. cruzi and their mammalian host cells. An unbiased, quantitative mass spectrometric analysis of lipid fractions was performed with the identification of 1079 lipids within 30 classes. From these profiles we deduced that T. cruzi amastigotes maintain an overall lipid identity that is distinguishable from mammalian host cells. A deeper analysis of the fatty acid moiety distributions within each lipid subclass facilitated the high confidence assignment of host- and parasite-like lipid signatures. This analysis unexpectedly revealed a strong host lipid signature in the parasite lipidome, most notably within its glycerolipid fraction. The near complete overlap of fatty acid moiety distributions observed for host and parasite triacylglycerols suggested that T. cruzi amastigotes acquired a significant portion of their lipidome from host triacylglycerol pools. Metabolic tracer studies confirmed long-chain fatty acid scavenging by intracellular T. cruzi amastigotes, a capacity that was significantly diminished in host cells deficient for de novo triacylglycerol synthesis via the diacylglycerol acyltransferases (DGAT1/2). Reduced T. cruzi amastigote proliferation in DGAT1/2-deficient fibroblasts further underscored the importance of parasite coupling to host triacylglycerol pools during the intracellular infection cycle. Thus, our comprehensive lipidomic dataset provides a substantially enhanced view of T. cruzi infection biology highlighting the interplay between host and parasite lipid metabolism with potential bearing on future therapeutic intervention strategies.