Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nucleic Acids Res ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39189453

ABSTRACT

FANCM is a DNA repair protein that recognizes stalled replication forks, and recruits downstream repair factors. FANCM activity is also essential for the survival of cancer cells that utilize the Alternative Lengthening of Telomeres (ALT) mechanism. FANCM efficiently recognizes stalled replication forks in the genome or at telomeres through its strong affinity for branched DNA structures. In this study, we demonstrate that the N-terminal translocase domain drives this specific branched DNA recognition. The Hel2i subdomain within the translocase is crucial for effective substrate engagement and couples DNA binding to catalytic ATP-dependent branch migration. Removal of Hel2i or mutation of key DNA-binding residues within this domain diminished FANCM's affinity for junction DNA and abolished branch migration activity. Importantly, these mutant FANCM variants failed to rescue the cell cycle arrest, telomere-associated replication stress, or lethality of ALT-positive cancer cells depleted of endogenous FANCM. Our results reveal the Hel2i domain is key for FANCM to properly engage DNA substrates, and therefore plays an essential role in its tumour-suppressive functions by restraining the hyperactivation of the ALT pathway.

2.
DNA Repair (Amst) ; 140: 103701, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878565

ABSTRACT

FANCM is a multifunctional DNA repair enzyme that acts as a sensor and coordinator of replication stress responses, especially interstrand crosslink (ICL) repair mediated by the Fanconi anaemia (FA) pathway. Its specialised ability to bind and remodel branched DNA structures enables diverse genome maintenance activities. Through ATP-powered "branchpoint translocation", FANCM can promote fork reversal, facilitate replication traverse of ICLs, resolve deleterious R-loop structures, and restrain recombination. These remodelling functions also support a role as sensor of perturbed replication, eliciting checkpoint signalling and recruitment of downstream repair factors like the Fanconi anaemia FANCI:FANCD2 complex. Accordingly, FANCM deficiency causes chromosome fragility and cancer susceptibility. Other recent advances link FANCM to roles in gene editing efficiency and meiotic recombination, along with emerging synthetic lethal relationships, and targeting opportunities in ALT-positive cancers. Here we review key properties of FANCM's biochemical activities, with a particular focus on branchpoint translocation as a distinguishing characteristic.


Subject(s)
DNA Repair , Humans , DNA Helicases/metabolism , DNA Helicases/genetics , Animals , DNA Replication , Fanconi Anemia Complementation Group Proteins/metabolism , Fanconi Anemia Complementation Group Proteins/genetics , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/enzymology , DNA/metabolism
3.
Cell Rep ; 41(10): 111749, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36476850

ABSTRACT

Co-transcriptional R loops arise from stalling of RNA polymerase, leading to the formation of stable DNA:RNA hybrids. Unresolved R loops promote genome instability but are counteracted by helicases and nucleases. Here, we show that branchpoint translocases are a third class of R-loop-displacing enzyme in vitro. In cells, deficiency in the Fanconi-anemia-associated branchpoint translocase FANCM causes R-loop accumulation, particularly after treatment with DNA:RNA-hybrid-stabilizing agents. This correlates with FANCM localization at R-loop-prone regions of the genome. Moreover, other branchpoint translocases associated with human disease, such as SMARCAL1 and ZRANB3, and those from lower organisms can also remove R loops in vitro. Branchpoint translocases are more potent than helicases in resolving R loops, indicating their evolutionary important role in R-loop suppression. In human cells, FANCM, SMARCAL1, and ZRANB3 depletion causes additive effects on R-loop accumulation and DNA damage. Our work reveals a mechanistic basis for R-loop displacement that is linked to genome stability.


Subject(s)
R-Loop Structures , RNA , Humans , DNA Helicases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL