Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Anim Genet ; 55(4): 670-675, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38644700

ABSTRACT

During the last 60 years many inherited traits in domestic outbred cats were selected and retained giving birth to new breeds characterised by singular coat or morphological phenotypes. Among them, minimal white spotting associated with blue eyes was selected by feline breeders to create the Altai, Topaz, and Celestial breeds. Various established breeds also introduced this trait in their lineages. The trait, that was confirmed as autosomal dominant by breeding data, was first described in domestic cats from Kazakhstan and Russia, in British shorthair and British longhair from Russia, and in Maine Coon cats from the Netherlands, suggesting different founding effects. Using a genome-wide association study we identified a single region on chromosome C1 that was associated with the minimal white spotting and blue eyes phenotype (also called DBE by breeders for dominant blue eyes) in the French Celestial breed. Within that region we identified Paired Box 3 (PAX3) as the strongest candidate gene, since PAX3 is a key regulator of MITF (Melanocyte-Inducing Transcription Factor) and PAX3 variants have been previously identified in various species showing white spotting with or without blue eyes including the mouse and the horse. Whole genome sequencing of a Celestial cat revealed an endogenous retrovirus LTR (long terminal repeat) insertion within PAX3 intron 4 known to contain regulatory sequences (conserved non-coding element [CNE]) involved in PAX3 expression. The insertion is in the vicinity of CNE2 and CNE3. All 52 Celestial and Celestial-mixed cats with a DBE phenotype presented the insertion, that was absent in their 22 non-DBE littermates and in 87 non-DBE cats from various breeds. The outbred Celestial founder was also heterozygous for the insertion. Additionally, the variant was found in nine DBE Maine Coon cats related to the Celestial founder and four DBE Siberian cats with an uncertain origin. Segregation of the variant in the Celestial breed is consistent with dominant inheritance and does not appear to be associated with deafness. We propose that this NC_018730.3:g.206974029_206974030insN[395] variant represents the DBECEL (Celestial Dominant Blue Eyes) allele in the domestic cat.


Subject(s)
Breeding , Eye Color , PAX3 Transcription Factor , Animals , Cats/genetics , PAX3 Transcription Factor/genetics , Eye Color/genetics , Phenotype , Genome-Wide Association Study/veterinary , Genes, Dominant
2.
Anim Genet ; 54(1): 73-77, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36308003

ABSTRACT

Congenital coat-colour-related deafness is common among certain canine breeds especially those exhibiting extreme white spotting or merle patterning. We identified a non-syndromic deafness in Beauceron dogs characterised by a bilateral hearing loss in puppies that is not linked to coat colour. Pedigree analysis suggested an autosomal recessive transmission. By combining homozygosity mapping with whole genome sequencing and variant filtering in affected dogs we identified a CDH23:c.700C>T variant. The variant, located in the CHD23 (cadherin related 23) gene, was predicted to induce a CDH23:p.(Pro234Ser) change in the protein. Proline-234 of CDH23 protein is highly conserved across different vertebrate species. In silico tools predicted the CDH23:p.(Pro234Ser) change to be deleterious. CDH23 encodes a calcium-dependent transmembrane glycoprotein localised near the tips of hair-cell stereocilia in the mammalian inner ear. Intact function of these cilia is mandatory for the transformation of the acoustical wave into a neurological signal, leading to sensorineural deafness when impaired. By genotyping a cohort of 90 control Beauceron dogs sampled in France, we found a 3.3% carrier frequency. The CDH23:c.[700C>T] allele is easily detectable with a genetic test to avoid at-risk matings.


Subject(s)
Deafness , Dog Diseases , Hearing Loss, Sensorineural , Dogs , Animals , Mutation , Hearing Loss, Sensorineural/genetics , Deafness/genetics , Deafness/veterinary , Mutation, Missense , Alleles , Mammals/genetics , Dog Diseases/genetics
3.
Anim Genet ; 53(5): 715-718, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35703390

ABSTRACT

In the British feline breed a golden coat modification, called light-gold, akita or copper, was reported by breeders during the 2010s. This modification restricted eumelanin to the tip of the tail and hairs showed a wideband modification. Pedigree analyses revealed an autosomal recessive inheritance pattern. A single candidate region was identified using a genome-wide association study. Within that region, we identified CORIN (Corin, serine peptidase) as the strongest candidate gene, since two CORIN variants have previously been identified in Siberian cats with a golden phenotype. A homozygous CORIN:c.2425C>T nonsense variant was identified in copper British cats. Segregation of the variant was consistent with recessive inheritance. This nonsense CORIN:c.2425C>T variant, located in CORIN exon 19, was predicted to produce a truncated CORIN protein - CORIN:p.(Arg809Ter) - that would lack part of the scavenger receptor domain and the trypsine-like serine protease catalytic domain. All 30 copper cats were T/T homozygous for the variant, which was also found in 20 C/T heterozygous British control cats but was absent in 340 cats from the 99 Lives dataset. Finally, genotyping of 218 cats from 12 breeds failed to identify carriers in cats from other breeds. We propose that this third CORIN:c.2425C>T variant represents the wbBSH (British recessive wideband) allele in the domestic cat.


Subject(s)
Copper , Genome-Wide Association Study , Alleles , Animals , Cats/genetics , Homozygote , Phenotype
4.
Anim Genet ; 53(5): 709-712, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35864734

ABSTRACT

Hereditary ataxias are common among canine breeds with various molecular etiology. We identified a hereditary ataxia in young-adult Australian Shepherd dogs characterized by uncoordinated movements and spasticity, worsening progressively and leading to inability to walk. Pedigree analysis suggested an autosomal recessive transmission. By whole genome sequencing and variant filtering of an affected dog we identified a PNPLA8:c.1169_1170dupTT variant. This variant, located in PNPLA8 (Patatin Like Phospholipase Domain Containing 8), was predicted to induce a PNPLA8:p.(His391PhefsTer394) frameshift, leading to a premature stop codon in the protein. The truncated protein was predicted to lack the functional patatin catalytic domain of PNPLA8, a calcium-independent phospholipase. PNPLA8 is known to be essential for maintaining mitochondrial energy production through tailoring mitochondrial membrane lipid metabolism and composition. The Australian Shepherd ataxia shares molecular and clinical features with Weaver syndrome in cattle and the mitochondrial-related neurodegeneration associated with PNPLA8 loss-of-function variants in humans. By genotyping a cohort of 85 control Australian Shepherd dogs sampled in France, we found a 4.7% carrier frequency. The PNPLA8:c.[1169_1170dupTT] allele is easily detectable with a genetic test to avoid at-risk matings.


Subject(s)
Cattle Diseases , Dog Diseases , Spinocerebellar Degenerations , Animals , Australia , Cattle , Cattle Diseases/genetics , Dog Diseases/genetics , Dogs , Frameshift Mutation , Humans , Pedigree , Phospholipases/genetics
5.
Anim Genet ; 51(4): 631-633, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32452546

ABSTRACT

In dogs and cats, unusual coat colour phenotypes may result from various phenomena, including chimerism. In the domestic cat, the tortoiseshell coat colour that combines red and non-red hairs is the most obvious way to identify chimeras in males. Several cases of tortoiseshell males have been reported, some of which were diagnosed as chimeras without any molecular confirmation. Here, we report the case of a female feline chimera identified thanks to its coat colour and confirmed through DNA profiling and a coat colour test. We ruled out the hypothesis of mosaicism and aneuploidy. All the data were consistent with a natural case of female chimerism.


Subject(s)
Cats/genetics , Chimerism/veterinary , Hair/physiology , Animals , Color , DNA Fingerprinting/veterinary , Female , Pigmentation/genetics
6.
Vet Ophthalmol ; 21(1): 10-18, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28444876

ABSTRACT

OBJECTIVE: To document the clinical appearance and prevalence of cataracts in a French population of Bengal cats. METHODS: Two distinct populations of Bengal cats were examined as follows: (i) 51 animals recruited for evaluation of national prevalence of ocular diseases in an observational study conducted between October 2014 and November 2016 at the Alfort ophthalmology unit; (ii) 12 patients referred for cataract diagnosis examined at a veterinary eye clinic located in central France, between December 2014 and February 2016. Buccal swabs or blood samples for DNA analysis were collected from all patients. The pedigrees of the examined Bengal cats were also investigated. RESULTS: Cataracts were diagnosed in 23 of 51 (45%) cats in the observational study and in all cats in the referral population, mostly bilaterally. Visual impairment was never reported. Age of subjects affected by cataracts ranged from 3 months to 9.6 years (median: 1.9 years). Cataracts were classified as nuclear cataracts (14 of 23 in the observational group and 12 of 12 in the referral group) with a focal, perinuclear, posterior, or complete nuclear pattern, or posterior polar subcapsular cataracts (10 of 23 only in the observational group). An inherited congenital origin appears to be the most likely hypothesis. The pedigree analysis suggests a hereditary component of cataract formation, but further analyses in a larger population or test matings are needed to determine the exact mode of inheritance. CONCLUSION: Presumed inherited cataracts appear to have a high prevalence in Bengal cats in France. The main manifestations are nuclear or subcapsular form, mostly bilateral, symmetrical, and apparently nonprogressive.


Subject(s)
Cat Diseases/epidemiology , Cataract/veterinary , Animals , Cat Diseases/etiology , Cat Diseases/prevention & control , Cataract/epidemiology , Cats , Diagnostic Techniques, Ophthalmological/veterinary , Female , France/epidemiology , Male , Pedigree , Prevalence
7.
Anim Genet ; 53(4): 543-545, 2022 08.
Article in English | MEDLINE | ID: mdl-35574714
8.
Genet Sel Evol ; 47: 28, 2015 Apr 08.
Article in English | MEDLINE | ID: mdl-25887951

ABSTRACT

BACKGROUND: Seven donkey breeds are recognized by the French studbook and are characterized by a black, bay or grey coat colour including light cream-to-white points (LP). Occasionally, Normand bay donkeys give birth to dark foals that lack LP and display the no light points (NLP) pattern. This pattern is more frequent and officially recognized in American miniature donkeys. The LP (or pangare) phenotype resembles that of the light bellied agouti pattern in mouse, while the NLP pattern resembles that of the mammalian recessive black phenotype; both phenotypes are associated with the agouti signaling protein gene (ASIP). FINDINGS: We used a panel of 127 donkeys to identify a recessive missense c.349 T > C variant in ASIP that was shown to be in complete association with the NLP phenotype. This variant results in a cysteine to arginine substitution at position 117 in the ASIP protein. This cysteine is highly-conserved among vertebrate ASIP proteins and was previously shown by mutagenesis experiments to lie within a functional site. Altogether, our results strongly support that the identified mutation is causative of the NLP phenotype. CONCLUSIONS: Thus, we propose to name the c.[349 T > C] allele in donkeys, the a(nlp) allele, which enlarges the panel of coat colour alleles in donkeys and ASIP recessive loss-of-function alleles in animals.


Subject(s)
Agouti Signaling Protein/genetics , Equidae/genetics , Mutation, Missense , Phenotype , Animals , Genotype , Molecular Sequence Data
9.
Genet Sel Evol ; 46: 65, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25927731

ABSTRACT

BACKGROUND: Seven donkey breeds are recognized by the French studbook. Individuals from the Pyrenean, Provence, Berry Black, Normand, Cotentin and Bourbonnais breeds are characterized by a short coat, while those from the Poitou breed (Baudet du Poitou) are characterized by a long-hair phenotype. We hypothesized that loss-of-function mutations in the FGF5 (fibroblast growth factor 5) gene, which are associated with a long-hair phenotype in several mammalian species, may account for the special coat feature of Poitou donkeys. To the best of our knowledge, mutations in FGF5 have never been described in Equidae. METHODS: We sequenced the FGF5 gene from 35 long-haired Poitou donkeys, as well as from a panel of 67 short-haired donkeys from the six other French breeds and 131 short-haired ponies and horses. RESULTS: We identified a recessive c.433_434delAT frameshift deletion in FGF5, present in Poitou and three other donkey breeds and a recessive nonsense c.245G > A substitution, present in Poitou and four other donkey breeds. The frameshift deletion was associated with the long-hair phenotype in Poitou donkeys when present in two copies (n = 31) or combined with the nonsense mutation (n = 4). The frameshift deletion led to a stop codon at position 159 whereas the nonsense mutation led to a stop codon at position 82 in the FGF5 protein. In silico, the two truncated FGF5 proteins were predicted to lack the critical ß strands involved in the interaction between FGF5 and its receptor, a mandatory step to inhibit hair growth. CONCLUSIONS: Our results highlight the allelic heterogeneity of the long-hair phenotype in donkeys and enlarge the panel of recessive FGF5 loss-of-function alleles described in mammals. Thanks to the DNA test developed in this study, breeders of non-Poitou breeds will have the opportunity to identify long-hair carriers in their breeding stocks.


Subject(s)
Equidae/genetics , Fibroblast Growth Factor 5/genetics , Hair/physiology , Mutation , Alleles , Animals , Frameshift Mutation , Genes, Recessive , Horses/genetics , Molecular Sequence Data , Polymorphism, Genetic
11.
Animals (Basel) ; 14(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38997957

ABSTRACT

During the last twenty years, minimal white spotting associated with blue eyes was selected by feline breeders to create the Altai, Topaz, and Celestial breeds. Additionally, certain breeders introduced this trait in their lineages of purebred cats. The trait has been called "dominant blue eyes (DBE)" and was confirmed to be autosomal dominant in all lineages. DBE was initially described in outbred cats from Kazakhstan and Russia and in two purebred lineages of British cats from Russia, as well as in Dutch Maine Coon cats, suggesting different founding effects. We have previously identified two variants in the Paired Box 3 (PAX3) gene associated with DBE in Maine Coon and Celestial cats; however, the presence of an underlying variant remains undetermined in other DBE breeding lines. Using a genome-wide association study, we identified a single region on chromosome C1 that was associated with DBE in British cats. Within that region, we identified PAX3 as the strongest candidate gene. Whole-genome sequencing of a DBE cat revealed an RD-114 retrovirus LTR (long terminal repeat) insertion within PAX3 intron 4 (namely NC_018730.3:g.206975776_206975777insN[433]) known to contain regulatory sequences. Using a panel of 117 DBE cats, we showed that this variant was fully associated with DBE in two British lineages, in Altai cats, and in some other DBE lineages. We propose that this NC_018730.3:g.206975776_206975777insN[433] variant represents the DBEALT (Altai Dominant Blue Eye) allele in the domestic cat. Finally, we genotyped DBE cats from 14 lineages for the three PAX3 variants and showed that they were not present in four lineages, confirming genetic heterogeneity of the DBE trait in the domestic cat.

12.
G3 (Bethesda) ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869246

ABSTRACT

This study investigated the dominant blue eyes (DBE) trait linked to hearing impairment and variable white spotting in Maine Coon cats. Fifty-eight animals descending from two different DBE lineages, the Dutch and the Topaz lines, were sampled. They comprised 48 cats from the Dutch bloodline, including 9 green-eyed and 31 blue-eyed cats, with some individuals exhibiting signs of deafness, and 8 stillborn kittens. Samples from the Topaz lineage included ten blue-eyed animals. A brainstem auditory evoked potential test (BAER) revealed a reduced to absent response to auditory stimuli and absent physiological waveforms in all of the eight examined DBE animals. We sequenced the genome of two affected cats from the Dutch line and searched for variants in 19 candidate genes for the human Waardenburg syndrome and pigmentary disorders. This search yielded nine private protein-changing candidate variants in the genes PAX3, EDN3, KIT, OCA2, SLC24A5, HERC2 and TYRP1. The genotype-phenotype co-segregation was observed for the PAX3 variant within all animals from the Dutch lineage. The mutant allele was absent from 461 control genomes and 241 additionally genotyped green-eyed Maine Coons. We considered the PAX3 variant as the most plausible candidate -a heterozygous nonsense single basepair substitution in exon 6 of PAX3 (NC_051841.1: g.205,787,310G>A, XM_019838731.3:c.937C>T, XP_019694290.1:p.Gln313*), predicted to result in a premature stop codon. PAX3 variants cause auditory-pigmentary syndrome in humans, horses, and mice. Together with the comparative data from other species, our findings strongly suggest PAX3:c.937C>T (OMIA:001688-9685) as the most likely candidate variant for the DBE, deafness and minimal white spotting in the Maine Coon Dutch line. Finally, we propose the designation of DBERE (Rociri Elvis Dominant Blue Eyes) allele in the domestic cat.

13.
Front Vet Sci ; 11: 1327081, 2024.
Article in English | MEDLINE | ID: mdl-38371598

ABSTRACT

Introduction: The correct labeling of a genetic variant as pathogenic is important as breeding decisions based on incorrect DNA tests can lead to the unwarranted exclusion of animals, potentially compromising the long-term health of a population. In human medicine, the American college of Medical Genetics (ACMG) guidelines provide a framework for variant classification. This study aims to apply these guidelines to six genetic variants associated with hypertrophic cardiomyopathy (HCM) in certain cat breeds and to propose a modified criterion for variant classification. Methods: Genetic samples were sourced from five cat breeds: Maine Coon, Sphynx, Ragdoll, Devon Rex, and British Short- and Longhair. Allele frequencies were determined, and in the subset with phenotypes available, odds ratios to determine the association with HCM were calculated. In silico evaluation followed with joint evidence and data from other publications assisting in the classification of each variant. Results: Two variants, MYBPC3:c.91G > C [A31P] and MYBPC3:c.2453C > T [R818W], were designated as pathogenic. One variant, MYH7:c.5647G > A [E1883K], was found likely pathogenic, while the remaining three were labeled as variants of unknown significance. Discussion: Routine genetic testing is advised solely for the MYBPC3:c.91G > C [A31P] in the Maine Coon and MYBPC3:c.2453C > T [R818W] in the Ragdoll breed. The human ACMG guidelines serve as a suitable foundational tool to ascertain which variants to include; however, refining them for application in veterinary medicine might be beneficial.

14.
Proc Natl Acad Sci U S A ; 107(33): 14775-80, 2010 Aug 17.
Article in English | MEDLINE | ID: mdl-20679209

ABSTRACT

Neuronal ceroid lipofuscinoses (NCLs) represent the most common group of inherited progressive encephalopathies in children. They are characterized by progressive loss of vision, mental and motor deterioration, epileptic seizures, and premature death. Rare adult forms of NCL with late onset are known as Kufs' disease. Loci underlying these adult forms remain unknown due to the small number of patients and genetic heterogeneity. Here we confirm that a late-onset form of NCL recessively segregates in US and French pedigrees of American Staffordshire Terrier (AST) dogs. Through combined association, linkage, and haplotype analyses, we mapped the disease locus to a single region of canine chromosome 9. We eventually identified a worldwide breed-specific variant in exon 2 of the Arylsulfatase G (ARSG) gene, which causes a p.R99H substitution in the vicinity of the catalytic domain of the enzyme. In transfected cells or leukocytes from affected dogs, the missense change leads to a 75% decrease in sulfatase activity, providing a functional confirmation that the variant might be the NCL-causing mutation. Our results uncover a protein involved in neuronal homeostasis, identify a family of candidate genes to be screened in patients with Kufs' disease, and suggest that a deficiency in sulfatase is part of the NCL pathogenesis.


Subject(s)
Arylsulfatases/genetics , Dog Diseases/genetics , Mutation, Missense , Neuronal Ceroid-Lipofuscinoses/veterinary , ATP-Binding Cassette Transporters/genetics , Age Factors , Animals , Arylsulfatases/deficiency , Catalytic Domain/genetics , Cell Line , Cerebellar Cortex/metabolism , Cerebellar Cortex/pathology , Cerebellar Cortex/ultrastructure , Chromosome Mapping , Chromosomes, Mammalian/genetics , Dog Diseases/enzymology , Dogs , Female , Gene Expression Profiling , Gene Frequency , Genotype , Haplotypes , Humans , Male , Microscopy, Electron, Transmission , Molecular Sequence Data , Pedigree , Polymorphism, Single Nucleotide , Reverse Transcriptase Polymerase Chain Reaction
15.
Gastroenterology ; 141(4): 1509-19, 1519.e1-3, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21762662

ABSTRACT

BACKGROUND & AIMS: Chronic, progressive hepatobiliary disease is the most severe complication of erythropoietic protoporphyria (EPP) and can require liver transplantation, although the mechanisms that lead to liver failure are unknown. We characterized protoporphyrin-IX (PPIX)-linked hepatobiliary disease in BALB/c and C57BL/6 (Fechm1Pas) mice with mutations in ferrochelatase as models for EPP. METHODS: Fechm1Pas and wild-type (control) mice were studied at 12-14 weeks of age. PPIX was quantified; its distribution in the liver, serum levels of lipoprotein-X, liver histology, contents of bile salt and cholesterol phospholipids, and expression of genes were compared in mice of the BALB/c and C57BL/6 backgrounds. The in vitro binding affinity of PPIX for bile components was determined. RESULTS: Compared with mice of the C57BL/6 background, BALB/c Fechm1Pas mice had a more severe pattern of cholestasis, fibrosis with portoportal bridging, bile acid regurgitation, sclerosing cholangitis, and hepatolithiasis. In C57BL/6 Fechm1Pas mice, PPIX was sequestrated mainly in the cytosol of hepatocytes and Kupffer cells, whereas, in BALB/c Fechm1Pas mice, PPIX was localized within enlarged bile canaliculi. Livers of C57BL/6 Fechm1Pas mice were protected through a combination of lower efflux of PPIX and reduced synthesis and export of bile acid. CONCLUSIONS: PPIX binds to bile components and disrupts the physiologic equilibrium of phospholipids, bile acids, and cholesterol in bile. This process might be involved in pathogenesis of sclerosing cholangitis from EPP; a better understanding might improve diagnosis and development of reagents to treat or prevent liver failure in patients with EPP.


Subject(s)
Cholangitis, Sclerosing/prevention & control , Hepatocytes/metabolism , Kupffer Cells/metabolism , Porphyria, Erythropoietic/metabolism , Protoporphyrins/metabolism , Animals , Bile Acids and Salts/metabolism , Cholangitis, Sclerosing/genetics , Cholangitis, Sclerosing/metabolism , Cholangitis, Sclerosing/pathology , Cholesterol/metabolism , Disease Models, Animal , Ferrochelatase/genetics , Ferrochelatase/metabolism , Gene Expression Regulation , Genotype , Hepatocytes/pathology , Kupffer Cells/pathology , Lipoprotein-X/blood , Liver Cirrhosis/metabolism , Liver Cirrhosis/prevention & control , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Phenotype , Phospholipids/metabolism , Point Mutation , Porphyria, Erythropoietic/complications , Porphyria, Erythropoietic/genetics , Porphyria, Erythropoietic/pathology , Severity of Illness Index
17.
Elife ; 102021 08 27.
Article in English | MEDLINE | ID: mdl-34448452

ABSTRACT

Skeletal muscles are composed of hundreds of multinucleated muscle fibers (myofibers) whose myonuclei are regularly positioned all along the myofiber's periphery except the few ones clustered underneath the neuromuscular junction (NMJ) at the synaptic zone. This precise myonuclei organization is altered in different types of muscle disease, including centronuclear myopathies (CNMs). However, the molecular machinery regulating myonuclei position and organization in mature myofibers remains largely unknown. Conversely, it is also unclear how peripheral myonuclei positioning is lost in the related muscle diseases. Here, we describe the microtubule-associated protein, MACF1, as an essential and evolutionary conserved regulator of myonuclei positioning and maintenance, in cultured mammalian myotubes, in Drosophila muscle, and in adult mammalian muscle using a conditional muscle-specific knockout mouse model. In vitro, we show that MACF1 controls microtubules dynamics and contributes to microtubule stabilization during myofiber's maturation. In addition, we demonstrate that MACF1 regulates the microtubules density specifically around myonuclei, and, as a consequence, governs myonuclei motion. Our in vivo studies show that MACF1 deficiency is associated with alteration of extra-synaptic myonuclei positioning and microtubules network organization, both preceding NMJ fragmentation. Accordingly, MACF1 deficiency results in reduced muscle excitability and disorganized triads, leaving voltage-activated sarcoplasmic reticulum Ca2+ release and maximal muscle force unchanged. Finally, adult MACF1-KO mice present an improved resistance to fatigue correlated with a strong increase in mitochondria biogenesis.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Microfilament Proteins/metabolism , Microtubules/metabolism , Mitochondria, Muscle/metabolism , Muscle Fibers, Skeletal/metabolism , Myoblasts, Skeletal/metabolism , Neuromuscular Junction/metabolism , Organelle Biogenesis , Animals , Cell Line , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/ultrastructure , Excitation Contraction Coupling , Mice, Inbred C57BL , Mice, Knockout , Microfilament Proteins/genetics , Microtubules/genetics , Microtubules/ultrastructure , Mitochondria, Muscle/genetics , Mitochondria, Muscle/ultrastructure , Muscle Fatigue , Muscle Fibers, Skeletal/ultrastructure , Muscle Strength , Myoblasts, Skeletal/ultrastructure , Neuromuscular Junction/genetics , Neuromuscular Junction/ultrastructure , Time Factors
18.
Pigment Cell Melanoma Res ; 33(6): 814-825, 2020 11.
Article in English | MEDLINE | ID: mdl-32558164

ABSTRACT

In the feline Donskoy breed, a phenotype that breeders call "pink-eye," with associated light-brown skin, yellow irises and red-eye effect, has been described. Genealogical data indicated an autosomal recessive inheritance pattern. A single candidate region was identified by genome-wide association study and SNP-based homozygosity mapping. Within that region, we further identified HPS5 (HPS5 Biogenesis Of Lysosomal Organelles Complex 2 Subunit 2) as a strong candidate gene, since HPS5 variants have been identified in humans and animals with Hermansky-Pudlak syndrome 5 or oculocutaneous albinism. A homozygous c.2571-1G>A acceptor splice-site variant located in intron 16 of HPS5 was identified in pink-eye cats. Segregation of the variant was 100% consistent with the inheritance pattern. Genotyping of 170 cats from 19 breeds failed to identify a single carrier in non-Donskoy cats. The c.2571-1G>A variant leads to HPS5 exon-16 splicing that is predicted to produce a 52 amino acids in-frame deletion in the protein. These results support an association of the pink-eye phenotype with the c.2571-1G>A variant. The pink-eye Donskoy cat extends the panel of reported HPS5 variants and offers an opportunity for in-depth exploration of the phenotypic consequences of a new HPS5 variant.


Subject(s)
Albinism, Oculocutaneous/genetics , Carrier Proteins/genetics , RNA Splice Sites/genetics , Alleles , Animals , Base Sequence , Cats , Chromosomes, Mammalian/genetics , Disease Models, Animal , Exons/genetics , Genetic Loci , Genetic Predisposition to Disease , Genome-Wide Association Study , Homozygote , Humans , Mice , Phenotype , Polymorphism, Single Nucleotide/genetics , RNA Splicing/genetics
19.
Genes (Basel) ; 11(6)2020 06 22.
Article in English | MEDLINE | ID: mdl-32580512

ABSTRACT

A variety of cat breeds have been developed via novelty selection on aesthetic, dermatological traits, such as coat colors and fur types. A recently developed breed, the lykoi (a.k.a. werewolf cat), was bred from cats with a sparse hair coat with roaning, implying full color and all white hairs. The lykoi phenotype is a form of hypotrichia, presenting as a significant reduction in the average numbers of follicles per hair follicle group as compared to domestic shorthair cats, a mild to severe perifollicular to mural lymphocytic infiltration in 77% of observed hair follicle groups, and the follicles are often miniaturized, dilated, and dysplastic. Whole genome sequencing was conducted on a single lykoi cat that was a cross between two independently ascertained lineages. Comparison to the 99 Lives dataset of 194 non-lykoi cats suggested two variants in the cat homolog for Hairless (HR) (HR lysine demethylase and nuclear receptor corepressor) as candidate causal gene variants. The lykoi cat was a compound heterozygote for two loss of function variants in HR, an exon 3 c.1255_1256dupGT (chrB1:36040783), which should produce a stop codon at amino acid 420 (p.Gln420Serfs*100) and, an exon 18 c.3389insGACA (chrB1:36051555), which should produce a stop codon at amino acid position 1130 (p.Ser1130Argfs*29). Ascertainment of 14 additional cats from founder lineages from Canada, France and different areas of the USA identified four additional loss of function HR variants likely causing the highly similar phenotypic hair coat across the diverse cats. The novel variants in HR for cat hypotrichia can now be established between minor differences in the phenotypic presentations.


Subject(s)
Breeding , Hair Color/genetics , Hair Follicle/growth & development , Hair/metabolism , Alleles , Animals , Cats , Hair/growth & development , Hair Follicle/metabolism , Polymorphism, Single Nucleotide/genetics
20.
J Feline Med Surg ; 22(12): 1103-1113, 2020 12.
Article in English | MEDLINE | ID: mdl-32067556

ABSTRACT

OBJECTIVES: Polydactyly has been described in two breeds of domestic cats (Maine Coon and Pixie Bob) and in some outbred domestic cats (eg, Hemingway cats). In most cases, feline polydactyly is a non-syndromic preaxial polydactyly. Three variants located in a regulatory sequence involved in limb development, named ZRS (zone of polarising activity regulatory sequence), have been identified to be responsible for feline polydactyly. These variants have been found in outbred domestic cats in the UK (UK1 and UK2 variants) and in Hemingway cats in the USA (Hw variant). The aim of this study was to characterise the genetic features of polydactyly in Maine Coon cats. METHODS: Genotyping assay was used to identify the variant(s) segregating in a cohort of 75 polydactyl and non-polydactyl Maine Coon cats from different breeding lines from Europe, Canada and the USA. The authors performed a segregation analysis to identify the inheritance pattern of polydactyly in this cohort and analysed the population structure. RESULTS: The Hw allele was identified in a subset of polydactyl cats. Sequencing of two regulatory sequences involved in limb development did not reveal any other variant in polydactyl cats lacking the Hw allele. Additionally, genotype-phenotype and segregation analyses revealed the peculiar inheritance pattern of polydactyly in Maine Coon cats. The population structure analysis demonstrated a genetic distinction between Hw and Hw-free polydactyl cats. CONCLUSIONS AND RELEVANCE: Polydactyly in Maine Coon cats is inherited as an autosomal dominant trait with incomplete penetrance and variable expressivity, and this trait is characterised by genetic heterogeneity in the Maine Coon breed. Maine Coon breeders should be aware of this situation and adapt their breeding practices accordingly.


Subject(s)
Cats/abnormalities , Genetic Heterogeneity , Polydactyly/veterinary , Animals , Canada , Europe , Female , Male , Polydactyly/genetics , United States
SELECTION OF CITATIONS
SEARCH DETAIL