Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Malar J ; 23(1): 303, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39385192

ABSTRACT

BACKGROUND: Malaria prevention and control strategies have been hampered by urbanization and the spread of Anopheles stephensi. The spread of this vector into Africa further complicates the already complex malaria situation, that could put about 126 million Africans at risk of infection. Hence, this study aimed to assess the determinants of urban malaria, focusing on the role of urbanization and the distribution of An. stephensi in Eastern Ethiopia. METHODS: A matched case control study was conducted among febrile urban residents of Dire Dawa (malaria positive as cases and negative as a control). A capillary blood sample was collected for parasite identification using microscopic examination and an interviewer administered questionnaire was used to collect additional data. Centers for Disease Control and Prevention miniature light traps (CDC-LT) and Prokopack aspirator were used to collect adult mosquito vectors from the selected cases and control houses to identify the mosquito vector species. Then, the data were exported to STATA for analysis. Conditional logistic regression was done to identify determinants, and principal component Analysis (PCA) was done for some independent variables. RESULTS: This study enrolled 132 cases and 264 controls from urban setting only. Of the 132 cases, 90 cases were positive for Plasmodium falciparum, 34 were positive for Plasmodium vivax and 8 had mixed infections. All cases and controls were similar with regard to their respective age and sex. Travel history (AOR: 13.1, 95% CI 2.8-61.4), presence of eves and holes on walls (AOR: 2.84, 95% CI 1.5-5.5), history of malaria diagnosis (AOR: 2.4, 95% CI 1.1-5.3), owning any livestock (AOR: 7.5, 95% CI 2.4-22.8), presence of stagnant water in the area (AOR: 3.2, 95% CI 1.7-6.1), sleeping under bed net the previous night (AOR: 0.21, 95% CI 0.1-0.6) and knowledge on malaria and its prevention (AOR: 2.2, 95% CI 1.2-4.1) were determinants of urban malaria infection. About 34 adult Anopheles mosquitoes were collected and identified from those selected cases and control houses and 27 of them were identified as An. stephensi. CONCLUSION: Among the cases, the dominant species were P. falciparum. This study identified travel history, house condition, past infection, livestock ownership, stagnant water, bed net use, and malaria knowledge as determinants of infection. This study also found the dominance of the presence of An. stephensi among the collected mosquito vectors. This suggests that the spread of An. stephensi may be impacting malaria infection in the study area. Hence, strengthening urban-targeted malaria interventions should be enhanced to prevent and control further urban malaria infection and spread.


Subject(s)
Anopheles , Malaria, Falciparum , Mosquito Vectors , Urban Population , Urbanization , Animals , Ethiopia/epidemiology , Anopheles/physiology , Anopheles/parasitology , Female , Male , Humans , Adult , Adolescent , Young Adult , Mosquito Vectors/parasitology , Mosquito Vectors/physiology , Case-Control Studies , Urban Population/statistics & numerical data , Child , Middle Aged , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Child, Preschool , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Plasmodium falciparum/isolation & purification , Plasmodium vivax/physiology , Infant
2.
Malar J ; 20(1): 263, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34107943

ABSTRACT

BACKGROUND: Anopheles stephensi, an invasive malaria vector, was first detected in Africa nearly 10 years ago. After the initial finding in Djibouti, it has subsequently been found in Ethiopia, Sudan and Somalia. To better inform policies and vector control decisions, it is important to understand the distribution, bionomics, insecticide susceptibility, and transmission potential of An. stephensi. These aspects were studied as part of routine entomological monitoring in Ethiopia between 2018 and 2020. METHODS: Adult mosquitoes were collected using human landing collections, pyrethrum spray catches, CDC light traps, animal-baited tent traps, resting boxes, and manual aspiration from animal shelters. Larvae were collected using hand-held dippers. The source of blood in blood-fed mosquitoes and the presence of sporozoites was assessed through enzyme-linked immunosorbent assays (ELISA). Insecticide susceptibility was assessed for pyrethroids, organophosphates and carbamates. RESULTS: Adult An. stephensi were collected with aspiration, black resting boxes, and animal-baited traps collecting the highest numbers of mosquitoes. Although sampling efforts were geographically widespread, An. stephensi larvae were collected in urban and rural sites in eastern Ethiopia, but An. stephensi larvae were not found in western Ethiopian sites. Blood-meal analysis revealed a high proportion of blood meals that were taken from goats, and only a small proportion from humans. Plasmodium vivax was detected in wild-collected An. stephensi. High levels of insecticide resistance were detected to pyrethroids, carbamates and organophosphates. Pre-exposure to piperonyl butoxide increased susceptibility to pyrethroids. Larvae were found to be susceptible to temephos. CONCLUSIONS: Understanding the bionomics, insecticide susceptibility and distribution of An. stephensi will improve the quality of a national response in Ethiopia and provide additional information on populations of this invasive species in Africa. Further work is needed to understand the role that An. stephensi will have in Plasmodium transmission and malaria case incidence. While additional data are being collected, national programmes can use the available data to formulate and operationalize national strategies against the threat of An. stephensi.


Subject(s)
Animal Distribution , Anopheles/physiology , Insecticide Resistance , Life History Traits , Animals , Anopheles/growth & development , Ethiopia , Insecticides/pharmacology , Larva/growth & development , Larva/physiology , Malaria/transmission
4.
Malar J ; 14: 187, 2015 May 03.
Article in English | MEDLINE | ID: mdl-25935845

ABSTRACT

BACKGROUND: In Ethiopia, Anopheles arabiensis is the main vector responsible for the transmission of malaria in the country and its control mainly involves application of indoor residual spraying (IRS) and use of insecticide-treated bed nets (ITNs). OBJECTIVE: Although the role of repellents for reducing man-vector contact is documented in the literature, the response of An. arabiensis to repellents was not previously evaluated under field conditions in Ethiopia. METHOD: The trial was conducted in Sodere village assessing the repellent activities of four repellents, of which, two of them were commercially available DEET (N, N-diethyl-1,3-methylbenzamide) and MyggA (p-methane diol) and the other two were laboratory- produced, 20% neem oil and 20% chinaberry oil. A 6 by 6 Latin square design was employed by involving six volunteers who received rotated treatments of repellents and the Ethiopian Niger seed, noog abyssinia (Guizotia abyssinia), and locally called as noog oil (diluents to the two plant oils). Each volunteer also served as control. Volunteers were positioned at a distance of 20-40 m from each other and each was treated with one of the repellents, Niger seed/noog/ oil or untreated. Landing mosquitoes were collected from dusk to down using tests tubes. The tests were done in three replicates. RESULTS: Both DEET and MyggA provided more than 96% protection. The mean protection time for DEET was 8 hrs while the time for MyggA was 6 hrs. Protection obtained from neem oil and chinaberry oil was almost similar (more than 70%), however, the complete protection time for neem was 3 hrs, while that of chinaberry oil was one hour. CONCLUSION: The commercial products and laboratory-produced repellents can be utilized by individuals to avoid contact with An. arabiensis in Ethiopia.


Subject(s)
Anopheles , Insect Repellents , Insect Vectors , Malaria/prevention & control , Mosquito Control , Adult , Animals , Child , DEET , Ethiopia , Glycerides , Humans , Male , Melia azedarach/chemistry , Plant Oils , Terpenes , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL