Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Plant Cell ; 35(5): 1334-1359, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36691724

ABSTRACT

Gynandropsis gynandra (Cleomaceae) is a cosmopolitan leafy vegetable and medicinal plant, which has also been used as a model to study C4 photosynthesis due to its evolutionary proximity to C3 Arabidopsis (Arabidopsis thaliana). Here, we present the genome sequence of G. gynandra, anchored onto 17 main pseudomolecules with a total length of 740 Mb, an N50 of 42 Mb and 30,933 well-supported gene models. The G. gynandra genome and previously released genomes of C3 relatives in the Cleomaceae and Brassicaceae make an excellent model for studying the role of genome evolution in the transition from C3 to C4 photosynthesis. Our analyses revealed that G. gynandra and its C3 relative Tarenaya hassleriana shared a whole-genome duplication event (Gg-α), then an addition of a third genome (Th-α, +1×) took place in T. hassleriana but not in G. gynandra. Analysis of syntenic copy number of C4 photosynthesis-related gene families indicates that G. gynandra generally retained more duplicated copies of these genes than C3T. hassleriana, and also that the G. gynandra C4 genes might have been under positive selection pressure. Both whole-genome and single-gene duplication were found to contribute to the expansion of the aforementioned gene families in G. gynandra. Collectively, this study enhances our understanding of the polyploidy history, gene duplication and retention, as well as their impact on the evolution of C4 photosynthesis in Cleomaceae.


Subject(s)
Arabidopsis , Brassicaceae , Magnoliopsida , Gene Duplication , Magnoliopsida/genetics , Brassicaceae/genetics , Arabidopsis/genetics , Photosynthesis/genetics , Evolution, Molecular
2.
Proc Natl Acad Sci U S A ; 120(14): e2205794120, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36972432

ABSTRACT

As climate changes in sub-Saharan Africa (SSA), Africa's "forgotten" food crops offer a wide range of options to diversify major staple production as a key measure toward achieving zero hunger and healthy diets. So far, however, these forgotten food crops have been neglected in SSA's climate-change adaptation strategies. Here, we quantified their capacity to adapt cropping systems of SSA's major staples of maize, rice, cassava, and yams to changing climates for the four subregions of West, Central, East, and Southern Africa. We used climate-niche modeling to explore their potential for crop diversification or the replacement of these major staples by 2070, and assessed the possible effects on micronutrient supply. Our results indicated that approximately 10% of the present production locations of these four major staples in SSA may experience novel climate conditions in 2070, ranging from a high of almost 18% in West Africa to a low of less than 1% in Southern Africa. From an initial candidate panel of 138 African forgotten food crops embracing leafy vegetables, other vegetables, fruits, cereals, pulses, seeds and nuts, and roots and tubers, we selected those that contributed most to covering projected future and contemporary climate conditions of the major staples' production locations. A prioritized shortlist of 58 forgotten food crops, able to complement each other in micronutrient provision, was determined, which covered over 95% of assessed production locations. The integration of these prioritized forgotten food crops in SSA's cropping systems will support the "double-win" of more climate-resilient and nutrient-sensitive food production in the region.


Subject(s)
Crops, Agricultural , Diet, Healthy , Africa South of the Sahara , Vegetables , Micronutrients , Climate Change , Agriculture/methods , Food Supply
3.
BMC Plant Biol ; 24(1): 913, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39350060

ABSTRACT

BACKGROUND: The shea tree is a well-known carbon sink in Africa that requires a sustainable conservation of its gene pool. However, the genetic structure of its population is not well studied, especially in Côte d'Ivoire. In this study, 333 superior shea tree genotypes conserved in situ in Côte d'Ivoire were collected and genotyped with the aim of investigating its genetic diversity and population structure to facilitate suitable conservation and support future breeding efforts to adapt to climate change effects. RESULTS: A total of 7,559 filtered high-quality single nucleotide polymorphisms (SNPs) were identified using the genotyping by sequencing technology. The gene diversity (HE) ranged between 0.1 to 0.5 with an average of 0.26, while the polymorphism information content (PIC) value ranged between 0.1 to 0.5 with an average of 0.24, indicating a moderate genetic diversity among the studied genotypes. The population structure model classified the 333 genotypes into three genetic groups (GP1, GP2, and GP3). GP1 contained shea trees that mainly originated from the Poro, Tchologo, and Hambol districts, while GP2 and GP3 contained shea trees collected from the Bagoué district. Analysis of molecular variance (AMOVA) identified 55% variance within populations and 45% variance within individuals, indicating a very low genetic differentiation (or very high gene exchange) between these three groups (FST = 0.004, gene flow Nm = 59.02). Morphologically, GP1 displayed spreading tree growth habit, oval nut shape, higher mean nut weight (10.62 g), wide leaf (limb width = 4.63 cm), and small trunk size (trunk circumference = 133.4 cm). Meanwhile, GP2 and GP3 showed similar morphological characteristics: erect and spreading tree growth habit, ovoid nut shape, lower mean nut weight (GP2: 8.89 g; GP3: 8.36 g), thin leaf (limb width = 4.45 cm), and large trunk size ( GP2: 160.5 cm, GP3: 149.1 cm). A core set of 100 superior shea trees, representing 30% of the original population size and including individuals from all four study districts, was proposed using the "maximum length sub-tree function" in DARwin v. 6.0.21. CONCLUSION: These findings provide new knowledge of the genetic diversity and population structure of Ivorian shea tree genetic resources for the design of effective collection and conservation strategies for the efficient use of inbreeding.


Subject(s)
Genetic Variation , Polymorphism, Single Nucleotide , Cote d'Ivoire , Genotype , Genetics, Population
4.
Plant Dis ; 108(7): 2006-2016, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38243182

ABSTRACT

Black sigatoka disease (BSD) is the most important foliar threat in banana production, and breeding efforts against it should take advantage of genomic selection (GS), which has become one of the most explored tools to increase genetic gain, save time, and reduce selection costs. To evaluate the potential of GS in banana for BSD, 210 triploid accessions were obtained from the African Banana and Plantain Research Center to constitute a training population. The variability in the population was assessed at the phenotypic level using BSD- and agronomic-related traits and at the molecular level using single-nucleotide polymorphisms (SNPs). The analysis of variance showed a significant difference between accessions for almost all traits measured, although at the genomic group level, there was no significant difference for BSD-related traits. The index of non-spotted leaves among accessions ranged from 0.11 to 0.8. The accessions screening in controlled conditions confirmed the susceptibility of all genomic groups to BSD. The principal components analysis with phenotypic data revealed no clear diversity partition of the population. However, the structure analysis and the hierarchical clustering analysis with SNPs grouped the population into four clusters and two subpopulations, respectively. The field and laboratory screening of the banana GS training population confirmed that all genomic groups are susceptible to BSD but did not reveal any genetic structure, whereas SNP markers exhibited clear genetic structure and provided useful information in the perspective of applying GS.


Subject(s)
Musa , Plant Diseases , Polymorphism, Single Nucleotide , Selection, Genetic , Triploidy , Musa/genetics , Polymorphism, Single Nucleotide/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Genome, Plant/genetics , Phenotype , Plant Leaves/genetics , Plant Breeding
5.
Plant Dis ; 107(6): 1861-1866, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36510426

ABSTRACT

Kersting's groundnut (Macrotyloma geocarpum) is a neglected and underutilized legume crop in Benin and is subject to several constraints, including diseases and pests, which constitute a bottleneck to its production. A randomized semistructured interview and participant observation survey were conducted in September 2020 to identify the perception and knowledge of farmers regarding diseases and pests affecting Kersting's groundnut. Thus, 84 farmers were surveyed in three agroecological zones where Kersting's groundnut is produced in Benin. After observation of disease symptoms through photographs, about 62% of the respondents stated that they observed diseases with low to medium incidence, but nearly 93% of the respondents did not recognize these symptoms as due to diseases. However, although 83% of the respondents recognize diseases as a constraint, all respondents (100%) do not adopt any control strategy against these diseases, due to the lack of knowledge about management practices, and are linking the symptoms to mystical phenomena, heavy rainfall, or strong sunlight. As for pests, about 69% of the respondents observe them in their fields but 80% of the respondents do not consider them as a constraint in Kersting's groundnut production, although 17 and 26% of the respondents claim to observe locusts and caterpillars, respectively, in their fields. No control methods are applied against these pests. Extensive extension work is needed to raise awareness of the diseases and pests of this crop while seeking effective control strategies.


Subject(s)
Fabaceae , Farmers , Humans , Benin , Vegetables , Perception
6.
Theor Appl Genet ; 134(12): 3785-3803, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34309683

ABSTRACT

The economic importance of the maize streak virus disease to the African maize production dynamic is to be appreciated now more than ever due to the preponderant influence of a changing climate. Continued dependence on a single major-effect quantitative trait locus (QTL) called Msv1 on Chromosome 1 of Maize (Zea mays L.) is not guaranteed to ensure durable resistance to the causal pathogen. With over ten decades of research on the disease and its associated host plant resistance mechanisms, it is pertinent to consider future approaches to attaining durability by looking to the synergistic roles of moderate- and minor-effect QTLs located on other chromosomes so as to facilitate a secure farming system for sub-Saharan Africa. For this review, more than 40 publications relating to maize streak disease research were methodically analysed with about 30% making specific reference to conventional, molecular and transgenic approaches employed in introgressing, maintaining and improving streak resistance in maize. A meta-analysis of mapped QTLs conferring streak resistance was conducted in a bid to reveal any inter-dependence or co-localization of resistant loci and to aid decision-making for marker-assisted breeding. With the changing climatic conditions around the globe, man's preparedness in the event of an epidemic following any evolutionary process in the streak viral genome was determined as insufficient. Modern breeding approaches including gene pyramiding that could be considered in maize breeding programmes to ensure durability for streak resistance were proposed while improving maize for other abiotic stress tolerance, particularly drought.


Subject(s)
Disease Resistance/genetics , Maize streak virus , Plant Diseases/genetics , Zea mays/genetics , Africa , Plant Breeding , Plant Diseases/virology , Quantitative Trait Loci , Zea mays/virology
7.
BMC Plant Biol ; 20(1): 168, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32295516

ABSTRACT

BACKGROUND: Spider plant [Gynandropsis gynandra (L.) Briq.], an economically promising African leafy vegetable, characterized for leaf yield components and nutritive quality, exhibits poor seed germination that hinders a wider expansion of the crop in urban and periurban horticultural systems. So far, there is little information pertaining to seed morphological traits and mineral elements content that may be associated with higher seed germination. This research investigated the hypothesis that spider plants from different geographical areas exhibited differences in seed mineral composition, morphological traits, and germination capacity. To this end, twenty-nine accessions of Gynandropsis gynandra from West and East-Southern Africa, and Asia were screened for variation in seed size (area, perimeter, length, width), 10-seed weight, mean germination time, germination percentage and mineral content variations. The scanning electron microscopy (SEM), light microscopy and energy dispersive spectroscopy (EDS) solution were used to study seed morphology and mineral composition. RESULTS: We show for the first time the external and internal structure of the seeds of Gynandropsis gynandra and measured eight mineral elements, including carbon (C), oxygen (O), magnesium (Mg), aluminium (Al), phosphorus (P), sulphur (S), potassium (K) and calcium (Ca). The accessions differed significantly (p < 0.001) with respect to seed size (area, perimeter, length, width), 10-seed weight, mean germination time and germination percentage. The hierarchical cluster analysis based on fourteen variables grouped the accessions into three distinct clusters, partially dependent on their geographical origin. Asian accessions exhibited smaller seeds and recorded higher values in terms of germination percentage. West African accessions had bigger seeds but with lower germination percentage. Variation in minerals such as potassium, carbon, and calcium content showed different patterns according to geographical origins. CONCLUSION: Smaller seeds in G. gynandra exhibited better germination capacity. The Asian germplasm is a potential source of cultivars with a higher germination percentage for improving seed quality in the species.


Subject(s)
Germination , Magnoliopsida , Seeds , Africa , Asia , Magnoliopsida/genetics , Magnoliopsida/growth & development , Magnoliopsida/metabolism , Microscopy, Electron, Scanning , Minerals/analysis , Phenotype , Seeds/genetics , Seeds/growth & development , Seeds/metabolism
8.
Planta ; 250(3): 933-947, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30911886

ABSTRACT

MAIN CONCLUSION: The variability in nutrient content and morphology in Gynandropsis gynandra is associated with the geographic origin of the accessions and provides a basis for breeding for higher levels of vitamin C, carotenoids or tocopherols in higher-yielding cultivars. We examined the variation in carotenoids, tocopherols and ascorbic acid as well as morphological traits in a worldwide germplasm of 76 accessions of the orphan leafy vegetable Gynandropsis gynandra (Cleomaceae) using greenhouse experiments and high-performance liquid chromatography analysis. The levels of carotenoids and tocopherols accumulating in the leaves varied significantly across accessions and were linked with the geographical origin and morphological variation. The main carotenoids included lutein, ß-carotene, α-carotene and violaxanthin. A twofold to threefold variation was observed for these compounds. The main tocopherols detected were α-tocopherol and γ-tocopherol with a 20-fold variation. A ninefold variation in vitamin C concentration and independent of geographical origin was observed. Overall, the accessions were grouped into three clusters based on variation in nutrient content and morphology. West African accessions were short plants with small leaves and with high tocopherol contents and relatively low carotenoid contents, Asian accessions were short plants with broad leaves and with relatively low carotenoid and high tocopherol contents, while East-Southern African plants were tall with high contents of both carotenoids and chlorophylls and low tocopherol contents. Carotenoids were positively correlated with plant height as well as foliar and floral traits but negatively correlated with tocopherols. The absence of a significant correlation between vitamin C and other traits indicated that breeding for high carotenoids or tocopherols content may be coupled with improved leaf yield and vitamin C content. Our study provides baseline information on the natural variation available for traits of interest for breeding for enhanced crop yield and nutrient content in Gynandropsis gynandra.


Subject(s)
Cleome/growth & development , Crops, Agricultural/growth & development , Nutritive Value , Ascorbic Acid/metabolism , Carotenoids/metabolism , Chlorophyll/metabolism , Cleome/anatomy & histology , Cleome/metabolism , Crop Production , Crops, Agricultural/anatomy & histology , Geography , Plant Breeding , Quantitative Trait, Heritable , Tocopherols/metabolism , Vitamins/metabolism
9.
Am J Bot ; 105(10): 1662-1671, 2018 10.
Article in English | MEDLINE | ID: mdl-30299543

ABSTRACT

PREMISE OF THE STUDY: The domestication history of melon is still unclear. An African or Asian origin has been suggested, but its closest wild relative was recently revealed to be an Australian species. The complicated taxonomic history of melon has resulted in additional confusion, with a high number of misidentified germplasm collections currently used by breeders and in genomics research. METHODS: Using seven DNA regions sequenced for 90% of the genus and the major cultivar groups, we sort out described names and infer evolutionary origins and domestication centers. KEY RESULTS: We found that modern melon cultivars go back to two lineages, which diverged ca. 2 million years ago. One is restricted to Asia (Cucumis melo subsp. melo), and the second, here described as C. melo subsp. meloides, is restricted to Africa. The Asian lineage has given rise to the widely commercialized cultivar groups and their market types, while the African lineage gave rise to cultivars still grown in the Sudanian region. We show that C. trigonus, an overlooked perennial and drought-tolerant species from India is among the closest living relatives of C. melo. CONCLUSIONS: Melon was domesticated at least twice: in Africa and Asia. The African lineage and the Indian C. trigonus are exciting new resources for breeding of melons tolerant to climate change.


Subject(s)
Cucumis melo/genetics , Domestication , Evolution, Molecular , Africa , Asia , Cucumis melo/classification , India , Sequence Analysis, DNA
10.
Sci Total Environ ; 938: 173550, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38810760

ABSTRACT

Each plant species has its own rhizobacteriome, whose activities determine both soil biological quality and plant growth. Little knowledge exists of the rhizosphere bacterial communities associated with opportunity crops with high economic potential such as Synsepalum dulcificum. Native to West Africa, this shrub is famous for its red berries representing the only natural source of miraculin, a glycoprotein, with sweetening properties, but also playing a role in the treatment of cancer and diabetes. This study aimed to characterize the structure and diversity of rhizobacterial communities associated with S. dulcificum and to identify the parameters determining this diversity. An initial sampling stage allowed the collection of rhizosphere soils from 29 S. dulcificum accessions, belonging to three distinct phenotypes, from 16 municipalities of Benin, located either on farms or in home gardens. The bacterial diversity of these rhizosphere soils was assessed by Illumina sequencing of the 16S rRNA gene after DNA extraction from these soils. Furthermore, an analysis of the physicochemical properties of these soils was carried out. All accessions combined, the most represented phylum appeared to be Actinobacteriota, with an average relative abundance of 43.5 %, followed by Proteobacteria (14.8 %), Firmicutes (14.3 %) and Chloroflexi (12.2 %), yet the relative abundance of dominant phyla varied significantly among accessions (p < 0.05). Plant phenotype, habitat, climate and soil physicochemical properties affected the bacterial communities, but our study pointed out that soil physicochemical parameters were the main driver of rhizobacterial communities' structure and diversity. Among them, the assimilable phosphorus, lead, potassium, arsenic and manganese contents, texture and cation exchange capacity of rhizosphere soils were the major determinants of the composition and diversity of rhizosphere bacterial communities. These results suggested the possibility of improving the growth conditions and productivity of S. dulcificum, by harnessing its associated bacteria of interest and better managing soil physicochemical properties.


Subject(s)
Bacteria , Rhizosphere , Soil Microbiology , Benin , Bacteria/classification , RNA, Ribosomal, 16S , Microbiota , Soil/chemistry
11.
Front Plant Sci ; 15: 1454146, 2024.
Article in English | MEDLINE | ID: mdl-39363920

ABSTRACT

This review provides evidence on the genetic diversity, chemical constituents, and ecotoxicology of Mesosphaerum suaveolens ' essential oil. It emphasizes the agricultural benefits such as crop protection effectiveness of the plant and highlights the existing knowledge gaps and research perspectives to promote its utilization in agriculture. A systematic and extensive review of the literature was done and all pertinent full-text articles and abstracts were analyzed and incorporated into the review. Mesosphaerum suaveolens is used traditionally in pharmacology to treat several diseases such as malaria, constipation, stomach problems, and renal inflammation. It also treats cramps, digestive infections, headaches, and skin infections. To date, very few studies have been conducted worldwide about its genetic diversity. These studies highlighted three morphological variants, the blue-flowering, the white-flowering, and the light-purple flowering M. suaveolens. Its wide biological actions may be attributed to the numerous groups of chemical constituents in its essential oil including monoterpenes, sesquiterpenes, and diterpenes. Biological studies highlighted evidence of M. suaveolens being used as an antifungal, bactericidal, antimicrobial, insecticidal, and repellent plant. The essential oil extracted from M. suaveolens showed significant potential for the control of agricultural pests such as Sitiophilus zeamais, Helicoverpa armigera and Helminthosporium oryzae. M. suaveolens is commonly used worldwide as a pesticidal plant in healthcare, agriculture, and food preservation. However, there is a lack of studies concerning the toxicity and effectiveness of isolated potent phytotoxic substances, the efficacy screening in the field, the genetic diversity, the essential oil yield, and productivity. Consequently, further studies are required to fill the knowledge gaps.

12.
PLoS One ; 18(11): e0294315, 2023.
Article in English | MEDLINE | ID: mdl-37972084

ABSTRACT

Sweet fig (M. acuminata cv. Sotoumon) is an economically important dessert banana in Benin, with high nutritional, medicinal, and cultural values. Nevertheless, its productivity and yield are threatened by biotic and abiotic stresses. Relevant knowledge of the genetic diversity of this economically important crop is essential for germplasm conservation and the development of breeding programs. However, very little is known about the genetic makeup of this cultivar in Benin. To advance the understanding of genetic diversity in sweet fig banana germplasm, a Genotype-By-Sequencing (GBS) was performed on a panel of 273 accessions collected in different phytogeographical zones of Benin. GBS generated 8,457 quality SNPs, of which 1992 were used for analysis after filtering. The results revealed a low diversity in the studied germplasm (He = 0.0162). Genetic differentiation was overall very low in the collection as suggested by the negative differentiation index (Fstg = -0.003). The Analysis of Molecular Variance (AMOVA) indicated that the variation between accessions within populations accounted for 83.8% of the total variation observed (P < 0.001). The analysis of population structure and neighbor-joining tree partitioned the germplasm into three clusters out of which a predominant major one contained 98.1% of all accessions. These findings demonstrate that current sweet fig banana genotypes shared a common genetic background, which made them vulnerable to biotic and abiotic stress. Therefore, broadening the genetic base of the crop while maintaining its quality attributes and improving yield performance is of paramount importance. Moreover, the large genetic group constitutes an asset for future genomic selection studies in the crop and can guide the profiling of its conservation strategies.


Subject(s)
Ficus , Musa , Musculoskeletal Abnormalities , Musa/genetics , Ficus/genetics , Benin , Papua New Guinea , Plant Breeding , Polymorphism, Single Nucleotide , Genetic Variation
13.
Plant Genome ; 16(1): e20299, 2023 03.
Article in English | MEDLINE | ID: mdl-36661287

ABSTRACT

Although Synsepalum dulcificum is viewed as one of the most economically promising orphan tree crops worldwide, its genetic improvement and sustainable conservation are hindered by a lack of understanding of its evolutionary history and current population structure. Here, we report for the first time the application of genome-wide single nucleotide polymorphism genotyping to a diverse panel of S. dulcificum accessions to depict the genetic diversity and population structure of the species in the Dahomey Gap (DG) and Upper Guinea (UG) regions to infer its evolutionary history. Our findings suggest low overall genetic diversity but strong population divergence within the species. Neighbor-joining analysis detected two genetic groups in the UG and DG regions, while STRUCTURE distinguished three genetic groups, corresponding to the UG, Western DG, and Central DG regions. Application of Monmonier's algorithm revealed the existence of a barrier disrupting connectivity between the UG and DG groups. The Western DG group consistently exhibited the highest levels of nucleotide and haplotype diversities, while that of the Central DG exhibited the lowest. Analyses of Tajima's D, Fu's Fs, and Achaz Y* statistics suggest that while both UG and Central DG groups likely experienced recent expansions, the Western DG group is at equilibrium. These findings suggest a geographical structuring of genetic variation which supports the conclusion of differential evolutionary histories among West African groups of S. dulcificum. These results provide foundational insights to guide informed breeding population development and design sustainable conservation strategies for this species.


Subject(s)
Fruit , Synsepalum , Benin , Synsepalum/chemistry , Guinea , Plant Breeding , Africa, Western
14.
Heliyon ; 9(11): e21656, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38034689

ABSTRACT

Increasing production requires the development of high yielding cultivars adapted to various environments. Multi-environment trials (MET) remains the best approach to assess the performance of accessions across environments. The objective of this study was to select the best performing and stable accessions of sesame across different environments in Benin Republic. Nineteen sesame accessions were evaluated across eight environments using a randomized complete block design with four replicates. The accessions were evaluated for three traits: days to 50% flowering (D50F), thousand-seed weight (TSW), and seed yield (SY) during 2020 growing season. The stable and top-performing accessions across environments were determined using AMMI (Additive main effects and multiplicative interaction), GGE (Genotype main effect and genotype × environment interaction), and MTSI (Multi-trait stability index). AMMI analysis of variance showed a significant difference across environments for the three traits. The accessions were affected by environmental conditions for the three traits. The broad-sense heritability estimates were high (>0.60) for all the traits, indicating the improvement is achievable through selection. AMMI1 and AMMI2 biplots identified G10 and G13 as high seed yielding accessions adapted to environments E1, E2. The GGE biplot showed two mega-environments for TSW and three mega-environments for D50F and SY. For SY, G11 and G13 were the best accessions in the first mega-environment, G10 the best accession in the second mega-environment; G3 and G8 were the best accessions in the third mega-environment. AMMI and GGE analyses identified G10, G5, G12 as high seed yielding and stable accessions across environments. GGE biplot revealed that E1 and E2 were the most suitable environments for multi-location trials based on their discriminating ability and representativeness. MTSI indicated G10, G13, G19 as promising germplasm to be recommended for breeding program.

15.
Gene ; 859: 147210, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36681099

ABSTRACT

In the perspective of investigating genomic selection (GS) among Musa genotypes in West and Central Africa, banana accessions were phenotyped under natural drought stress in Benin and genotyped using genotyping by sequencing. Sixty-one (61) accessions grouped into three major genomic groups AAA, AAB and ABB and those without genomic affiliation information were used. Variation within the population was determined by phenotypic variables while population structure and clustering analysis were carried out to understand the genetic diversity at the molecular level. Among the genomic groups evaluated, the group AAB showed the best performance for fruit weight at maturity, (3.41 ± 1.99 kg) and for plant height (198.46 ± 12.66 cm). At the accession level, HD 117 S1 and NIA 27 showed the best plant height (263.16 ± 20.98 cm) and the best fruit weight at maturity (9.43 ± 0.0 kg) respectively. Phenotypic data did not reveal clear genetic diversity among accessions; however, the genetic diversity was conspicuous at the molecular level using 5000 markers. The affiliations of local accessions in genomic groups were determined for the first time based on the phenotypic and molecular data obtained in this study. The knowledge generated allows the possibility to apply GS in banana.


Subject(s)
Musa , Musa/genetics , Benin , Droughts , Genomics , Genetic Variation
16.
Plants (Basel) ; 11(3)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35161280

ABSTRACT

Trait diversity is crucial in undertaking the domestication of useful species such as Vitellaria paradoxa which makes a significant contribution to the rural household economy in Africa. This study aims to document the criteria farmers use to distinguish shea trees; how they vary according to age, education level and sociolinguistic group; and their perception of trees' abundance and production. We surveyed 405 respondents across shea parklands in Benin using a semi-structured questionnaire. We used the Kruskal-Wallis test to evaluate the influence of sociodemographic attributes on relative criteria citation frequency and principal components analysis to characterize farmers' perception on morphotypes' abundance, fruits, and butter yields. The five most cited criteria were fruit size (55.5%), tree fertility (15.40%), bark colour (10.51%), timing of production (5.38%), and pulp taste (3.42%). The citation frequency of criteria varied significantly depending on the sociodemographic factors considered. Trees having small fruit ('Yanki') were reported to be widespread and high fruit/nuts and butter producers. Farmers perceived five important traits with variable importance depending on the sociocultural factors studied. This finding is a key step toward the development of a shea improvement program that could focus on the morphotype Yanki reported to potentially be a high fruit and butter producer.

17.
Front Plant Sci ; 13: 953133, 2022.
Article in English | MEDLINE | ID: mdl-36388523

ABSTRACT

Genomic selection (GS) in plant breeding is explored as a promising tool to solve the problems related to the biotic and abiotic threats. Polyploid plants like bananas (Musa spp.) face the problem of drought and black sigatoka disease (BSD) that restrict their production. The conventional plant breeding is experiencing difficulties, particularly phenotyping costs and long generation interval. To overcome these difficulties, GS in plant breeding is explored as an alternative with a great potential for reducing costs and time in selection process. So far, GS does not have the same success in polyploid plants as with diploid plants because of the complexity of their genome. In this review, we present the main constraints to the application of GS in polyploid plants and the prospects for overcoming these constraints. Particular emphasis is placed on breeding for BSD and drought-two major threats to banana production-used in this review as a model of polyploid plant. It emerges that the difficulty in obtaining markers of good quality in polyploids is the first challenge of GS on polyploid plants, because the main tools used were developed for diploid species. In addition to that, there is a big challenge of mastering genetic interactions such as dominance and epistasis effects as well as the genotype by environment interaction, which are very common in polyploid plants. To get around these challenges, we have presented bioinformatics tools, as well as artificial intelligence approaches, including machine learning. Furthermore, a scheme for applying GS to banana for BSD and drought has been proposed. This review is of paramount impact for breeding programs that seek to reduce the selection cycle of polyploids despite the complexity of their genome.

18.
PLoS One ; 17(10): e0275829, 2022.
Article in English | MEDLINE | ID: mdl-36223403

ABSTRACT

Gynandropsis gynandra (spider plant) is an African traditional leafy vegetable rich in minerals, vitamins and health-promoting compounds with potential for health promotion, micronutrients supplementation and income generation for stakeholders, including pharmaceutical companies. However, information on biomass productivity is limited and consequently constrains breeders' ability to select high-yielding genotypes and end-users to make decisions on suitable cultivation and production systems. This study aimed to assess the phenotypic variability in biomass and related traits in a collection of G. gynandra advanced lines to select elite genotypes for improved cultivar development. Seventy-one advanced lines selected from accessions originating from Asia, West Africa, East Africa and Southern Africa were evaluated over two years with two replicates in a greenhouse using a 9 x 8 alpha lattice design. Significant statistical differences were observed among lines and genotype origins for all fourteen biomass and related traits. The results revealed three clusters, with each cluster dominated by lines derived from accessions from Asia (Cluster 1), West Africa (Cluster 2), and East/Southern Africa (Cluster 3). The West African and East/Southern African groups were comparable in biomass productivity and superior to the Asian group. Specifically, the West African group had a low number of long primary branches, high dry matter content and flowered early. The East/Southern African group was characterized by broad leaves, late flowering, a high number of short primary branches and medium dry matter content and was a candidate for cultivar release. The maintenance of lines' membership to their group of origin strengthens the hypothesis of geographical signature in cleome diversity and genetic driver of the observed variation. High genetic variance, broad-sense heritability and genetic gains showed the potential to improve biomass yield and related traits. Significant and positive correlations among biomass per plant, plant height, stem diameter and leaf size showed the potential of simultaneous and direct selection for farmers' desired traits. The present results provide insights into the diversity of spider plant genotypes for biomass productivity and represent key resources for further improvement in the species.


Subject(s)
Cleome , Magnoliopsida , Biological Variation, Population , Biomass , Genetic Variation , Genotype , Minerals , Pharmaceutical Preparations , Vitamins
19.
Front Plant Sci ; 13: 841226, 2022.
Article in English | MEDLINE | ID: mdl-36119621

ABSTRACT

Understanding the genetic variability within a plant species is paramount in implementing a successful breeding program. Spider plant (Gynandropsis gynandra) is an orphan leafy vegetable and an extraordinary source of vitamins, secondary metabolites and minerals, representing an important resource for combatting malnutrition. However, an evaluation of the leaf elemental composition, using a worldwide germplasm collection to inform breeding programs and the species valorization in human nutrition is still lacking. The present study aimed to profile the leaf elemental composition of G. gynandra and depict any potential geographical signature using a collection of 70 advanced lines derived from accessions originating from Asia and Eastern, Southern and West Africa. The collection was grown in a greenhouse using a 9 × 8 alpha lattice design with two replications in 2020 and 2021. Inductively coupled plasma-optical emission spectrometry was used to profile nine minerals contents. A significant difference (p < 0.05) was observed among the lines for all nine minerals. Microelements such as iron, zinc, copper and manganese contents ranged from 12.59-430.72, 16.98-166.58, 19.04-955.71, 5.39-25.10 mg kg-1 dry weight, respectively, while the concentrations of macroelements such as potassium, calcium, phosphorus and magnesium varied in the ranges of 9992.27-49854.23, 8252.80-33681.21, 3633.55-14216.16, 2068.03-12475.60 mg kg-1 dry weight, respectively. Significant and positive correlations were observed between iron and zinc and calcium and magnesium. Zinc, calcium, phosphorus, copper, magnesium, and manganese represented landmark elements in the genotypes. Eastern and Southern African genotypes were clustered together in group 1 with higher phosphorus, copper and zinc contents than Asian and West African lines, which clustered in group 2 and were characterized by higher calcium, magnesium and manganese contents. An additional outstanding group 3 of six genotypes was identified with high iron, zinc, magnesium, manganese and calcium contents and potential candidates for cultivar release. The genotype × year interaction variance was greater than the genotypic variance, which might translate to phenotypic plasticity in the species. Broad-sense heritability ranged from low to high and was element-specific. The present results reveal the leaf minerals diversity in spider plant and represent a baseline for implementing a minerals-based breeding program for human nutrition.

20.
Ecol Evol ; 11(4): 1918-1936, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33614013

ABSTRACT

The geographical origin of watermelon (Citrullus lanatus) remains debated. While a first hypothesis suggests the center of origin to be West Africa, where the endemic sister species C. mucosospermus thrives, a second hypothesis suggests northeastern Africa where the white-fleshed Sudanese Kordophan melon is cultivated. In this study, we infer biogeographical and haplotype genealogy for C. lanatus, C. mucosospermus, C. amarus, and C. colocynthis using noncoding cpDNA sequences (trnT-trnL and ndhF-rpl32 regions) from a global collection of 135 accessions. In total, we identified 38 haplotypes in C. lanatus, C. mucosospermus, C. amarus, and C. colocynthis; of these, 21 were found in Africa and 17 appear endemic to the continent. The least diverse species was C. mucosospermus (5 haplotypes) and the most diverse was C. colocynthis (16 haplotypes). Some haplotypes of C. mucosospermus were nearly exclusive to West Africa, and C. lanatus and C. mucosospermus shared haplotypes that were distinct from those of both C. amarus and C. colocynthis. The results support previous findings that revealed C. mucosospermus to be the closest relative to C. lanatus (including subsp. cordophanus). West Africa, as a center of endemism of C. mucosospermus, is an area of interest in the search of the origin of C. lanatus. This calls for further historical and phylogeographical investigations and wider collection of samples in West and northeastern Africa.

SELECTION OF CITATIONS
SEARCH DETAIL