Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Mol Cell Neurosci ; 121: 103754, 2022 07.
Article in English | MEDLINE | ID: mdl-35842170

ABSTRACT

The involvement of secretory pathways and Golgi dysfunction in neuronal cells during Alzheimer's disease progression is poorly understood. Our previous overexpression and knockdown studies revealed that the intracellular protein level of Syntaxin-5, an endoplasmic reticulum-Golgi soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE), modulates beta-amyloid precursor protein processing in neuronal cells. We recently showed that changes in endogenous Syntaxin-5 protein expression occur under stress induction. Syntaxin-5 was upregulated by endoplasmic reticulum stress but was degraded by Caspase-3 during apoptosis in neuronal cells. In addition, we showed that sustained endoplasmic reticulum stress promotes Caspase-3-dependent apoptosis during the later phase of the endoplasmic reticulum stress response in NG108-15 cells. In this study, to elucidate the consequences of secretory pathway dysfunction in beta-amyloid precursor protein processing that lead to neuronal cell death, we examined the effect of various stresses on endoplasmic reticulum-Golgi SNARE expression and beta-amyloid precursor protein processing. By using compounds to disrupt Golgi function, we show that Golgi stress promotes upregulation of the endoplasmic reticulum-Golgi SNARE Syntaxin-5, and prolonged stress causes Caspase-3-dependent apoptosis. Golgi stress induced intracellular beta-amyloid precursor protein accumulation and a concomitant decrease in total amyloid-beta production. We also examined the protective effect of the chemical chaperone 4-phenylbutylate on changes in amyloid-beta production and the activation of Caspase-3 induced by endoplasmic reticulum and Golgi stress. The compound alleviated the increase in the amyloid-beta 1-42/amyloid-beta 1-40 ratio induced by endoplasmic reticulum and Golgi stress. Furthermore, 4-phenylbutylate could rescue Caspase-3-dependent apoptosis induced by prolonged organelle stress. These results suggest that organelle stress originating from the endoplasmic reticulum and Golgi has a substantial impact on the amyloidogenic processing of beta-amyloid precursor protein and Caspase-3-dependent apoptosis, leading to neuronal cell death.


Subject(s)
Amyloid beta-Protein Precursor , SNARE Proteins , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Apoptosis , Caspase 3/metabolism , Golgi Apparatus/metabolism , Qa-SNARE Proteins/genetics , Qa-SNARE Proteins/metabolism , Qa-SNARE Proteins/pharmacology , SNARE Proteins/metabolism , SNARE Proteins/pharmacology , Up-Regulation
2.
J Neurochem ; 156(5): 604-613, 2021 03.
Article in English | MEDLINE | ID: mdl-32858780

ABSTRACT

De novo heterozygous mutations in the STX1B gene, encoding syntaxin 1B, cause a familial, fever-associated epilepsy syndrome. Syntaxin 1B is an essential component of the pre-synaptic neurotransmitter release machinery as a soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein that regulates the exocytosis of synaptic vesicles. It is also involved in regulating the functions of the SLC6 family of neurotransmitter transporters that reuptake neurotransmitters, including inhibitory neurotransmitters, such as γ-aminobutyric acid (GABA) and glycine. The purpose of the present study was to elucidate the molecular mechanisms underlying the development of febrile seizures by examining the effects of syntaxin 1B haploinsufficiency on inhibitory synaptic transmission during hyperthermia in a mouse model. Stx1b gene heterozygous knockout (Stx1b+/- ) mice showed increased susceptibility to febrile seizures and drug-induced seizures. In cultured hippocampal neurons, we examined the temperature-dependent properties of neurotransmitter release and reuptake by GABA transporter-1 (GAT-1) at GABAergic neurons using whole-cell patch-clamp recordings. The rate of spontaneous quantal GABA release was reduced in Stx1b+/- mice. The hyperthermic temperature increased the tonic GABAA current in wild-type (WT) synapses, but not in Stx1b+/- synapses. In WT neurons, recurrent bursting activities were reduced in a GABA-dependent manner at hyperthermic temperature; however, this was abolished in Stx1b+/- neurons. The blockade of GAT-1 increased the tonic GABAA current and suppressed recurrent bursting activities in Stx1b+/- neurons at the hyperthermic temperature. These data suggest that functional abnormalities associated with GABA release and reuptake in the pre-synaptic terminals of GABAergic neurons may increase the excitability of the neural circuit with hyperthermia.


Subject(s)
Body Temperature/physiology , Extracellular Fluid/metabolism , Seizures/metabolism , Synapses/metabolism , Syntaxin 1/metabolism , gamma-Aminobutyric Acid/metabolism , Animals , Animals, Newborn , Cells, Cultured , Hippocampus/metabolism , Hyperthermia/genetics , Hyperthermia/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pentylenetetrazole/toxicity , Seizures/chemically induced , Seizures/genetics , Synapses/genetics , Syntaxin 1/genetics
3.
Biochem J ; 474(14): 2465-2473, 2017 07 11.
Article in English | MEDLINE | ID: mdl-28559304

ABSTRACT

Syntaxin 1A (Stx1a) is primarily involved in the docking of synaptic vesicles at active zones in neurons. Its gene is a TATA-less gene, with several transcription initiation sites, which is activated by the binding of Sp1 and acetylated histone H3 (H3) in the core promoter region (CPR) through the derepression of class I histone deacetylase (HDAC). In the present study, to clarify the factor characterizing Stx1a gene expression via the protein kinase A (PKA) pathway inducing the Stx1a mRNA, we investigated whether the epigenetic process is involved in the Stx1a gene transcription induced by PKA signaling. We found that the PKA activator forskolin induced Stx1a expression in non-neuronal cells, FRSK and 3Y1, which do not endogenously express Stx1a, unlike PC12. HDAC8 inhibition by shRNA knockdown and specific inhibitors induced Stx1a expression in FRSK. The PKA inhibitor H89 suppressed HDAC8-Ser39 phosphorylation, H3 acetylation and Stx1a induction by forskolin in FRSK cells. Finally, we also found that forskolin led to the dissociation of HDAC8-CPR interaction and the association of Sp1 and Ac-H3 to CPR in FRSK. The results of the current study suggest that forskolin phosphorylates HDAC8-Ser39 via the PKA pathway and increases histone H3 acetylation in cells expressing HDAC8, resulting in the induction of the Stx1a gene.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Syntaxin 1/metabolism , Acetylation , Animals , Cell Line , Colforsin/pharmacology , Enzyme Activators/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Histones/metabolism , Phosphorylation , Rats , Signal Transduction , Syntaxin 1/genetics , Transcription, Genetic
4.
Eur J Neurosci ; 46(12): 2867-2874, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29139159

ABSTRACT

In neuronal plasma membrane, two syntaxin isoforms, HPC-1/syntaxin 1A (STX1A) and syntaxin 1B (STX1B), are predominantly expressed as soluble N-ethylmaleimide-sensitive fusion attachment protein receptors, also known as t-SNAREs. We previously reported that glutamatergic and GABAergic synaptic transmissions are impaired in Stx1b null mutant (Stx1b-/- ) mice but are almost normal in Stx1a null mutant (Stx1a-/- ) mice. These observations suggested that STX1A and STX1B have distinct functions in fast synaptic transmission in the central nervous system (CNS). Interestingly, recent studies indicated that Stx1a-/- or Stx1a+/- mice exhibit disruption in the monoaminergic system in the CNS, causing unusual behaviour that is similar to neuropsychological alterations observed in psychiatric patients. Here, we studied whether STX1B contributes to the regulation of monoaminergic system and if STX1B is related to neuropsychological properties in human neuropsychological disorders similar to STX1A. We found that monoamine release in vitro was normal in Stx1b+/- mice unlike Stx1a-/- or Stx1a+/- mice, but the basal extracellular dopamine (DA) concentration in the ventral striatum was increased. DA secretion in the ventral striatum is regulated by GABAergic neurons, and Stx1b+/- mice exhibited reduced GABA release both in vitro and in vivo, disrupting the DAergic system in the CNS of these mice. We also found that Stx1b+/- mice exhibited reduced pre-pulse inhibition (PPI), which is believed to represent one of the prominent schizotypal behavioural profiles of human psychiatric patients. The reduction in PPI was rescued by DA receptor antagonists. These observations indicated that STX1B contributes to excess activity of the DAergic system through regulation of GABAergic transmission.


Subject(s)
GABAergic Neurons/metabolism , Synaptic Potentials , Syntaxin 1/genetics , Animals , Cells, Cultured , Dopamine/metabolism , Dopamine Antagonists/pharmacology , GABAergic Neurons/drug effects , GABAergic Neurons/physiology , Male , Mice , Mice, Inbred C57BL , Neural Inhibition , Syntaxin 1/metabolism , Ventral Striatum/cytology , Ventral Striatum/metabolism , Ventral Striatum/physiology , gamma-Aminobutyric Acid/metabolism
5.
FASEB J ; 30(2): 525-43, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26391271

ABSTRACT

Syntaxin 1A (Stx1a) plays an important role in regulation of neuronal synaptic function. To clarify the mechanism of basic transcriptional regulation and neuron-specific transcription of Stx1a we cloned the Stx1a gene from rat, in which knowledge of the expression profile was accumulated, and elucidated that Stx1a consisting of 10 exons, possesses multiple transcription initiation sites and a 204-bp core promoter region (CPR) essential for transcription in PC12 cells. The TATA-less, conserved, GC-rich CPR has 2 specific protein (SP) sites that bind SP1 and are responsible for 65% of promoter activity. The endogenous CPR, including 23 CpG sites, is not methylated in PC12 cells, which express Stx1a and fetal rat skin keratinocyte (FRSK) cells, which do not, although an exogenous methylated CPR suppresses reporter activity in both lines. Trichostatin A (TSA) and class I histone deacetylase (HDAC) inhibitors, but not 5-azacytidine, induce Stx1a in FRSK cells. Acetylated histone H3 only associates to the CPR in FRSK cells after TSA addition, whereas the high acetylated histone H3-CPR association in PC12 cells was unchanged following treatment. HDAC inhibitor induction of Stx1a was negated by mithramycin A and deletion/mutation of 2 SP sites. HDAC1, HDAC2, and HDAC8 detach from the CPR when treated with TSA in FRSK cells and are associated with the CPR in lungs, and acetylated histone H3 associates to this region in the brain. In the first study characterizing a syntaxin promoter, we show that association of SP1 and acetylated histone H3 to CPR is important for Stx1a transcription and that HDAC1, HDAC2, and HDAC8 decide cell/tissue specificity in a suppressive manner.


Subject(s)
Gene Expression Regulation/physiology , Syntaxin 1/metabolism , Animals , Cell Line , Chromatin Immunoprecipitation , Cloning, Molecular , Promoter Regions, Genetic , Rats , Sp1 Transcription Factor/genetics , Sp1 Transcription Factor/metabolism , Syntaxin 1/genetics , TATA Box , Transcription Initiation Site , Transcriptome
6.
J Neurochem ; 138(1): 117-23, 2016 07.
Article in English | MEDLINE | ID: mdl-27059771

ABSTRACT

HPC-1/syntaxin1A (STX1A), a neuronal soluble N-ethylmaleimide-sensitive fusion attachment protein receptor, contributes to neural function in the CNS by regulating transmitter release. Recent studies reported that STX1A is associated with human neuropsychological disorders, such as autism spectrum disorder and attention deficit hyperactivity disorder. Previously, we showed that STX1A null mutant mice (STX1A KO) exhibit neuropsychological abnormalities, such as fear memory deficits, attenuation of latent inhibition, and unusual social behavior. These observations suggested that STX1A may be involved in the neuropsychological basis of these abnormalities. Here, to study the neural basis of social behavior, we analyzed the profile of unusual social behavior in STX1A KO with a social novelty preference test, which is a useful method for quantification of social behavior. Interestingly, the unusual social behavior in STX1A KO was partially rescued by intracerebroventricular administration of oxytocin (OXT). In vivo microdialysis studies revealed that the extracellular OXT concentration in the CNS of STX1A KO was significantly lower compared with wild-type mice. Furthermore, dopamine-induced OXT release was reduced in STX1A KO. These results suggested that STX1A plays an important role in social behavior through regulation of the OXTergic neural system. Dopamine (DA) release is reduced in CNS of syntaxin1A null mutant mice (STX1A KO). Unusual social behavior was observed in STX1A KO. We found that oxytocin (OXT) release, which was stimulated by DA, was reduced and was rescued the unusual social behavior in STX1A KO was rescued by OXT. These results indicated that STX1A plays an important role in promoting social behavior through regulation of DA-induced OXT release in amygdala.


Subject(s)
Amygdala/metabolism , Oxytocin/metabolism , Social Behavior Disorders/genetics , Social Behavior Disorders/pathology , Syntaxin 1/deficiency , Amygdala/drug effects , Analysis of Variance , Animals , Benzoxazines/pharmacology , Disease Models, Animal , Dopamine/pharmacology , Dopamine Uptake Inhibitors/pharmacology , Exploratory Behavior/physiology , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Humans , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microdialysis , Ovariectomy , Oxytocin/pharmacology , Piperazines/pharmacology , Piperidines/pharmacology , Receptors, Oxytocin/genetics , Receptors, Oxytocin/metabolism , Syntaxin 1/genetics
7.
Exp Cell Res ; 332(1): 11-23, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25596448

ABSTRACT

Endoplasmic reticulum (ER) stress plays a role in the pathogenesis of neurodegenerative diseases such as Alzheimer׳s disease (AD). We previously showed that manipulation of the ER-Golgi-soluble N-ethylmaleimide-sensitive factor-attachment protein receptors (ER-Golgi SNARE) syntaxin 5 (Syx5) causes changes in Golgi morphology and the processing of AD-related proteins. To understand the pathophysiologic significance of these phenomena, we examined whether the expression of Syx5 is altered by ER stress. De novo synthesis of ER-Golgi SNARE Syx5 and Bet1 was induced by various ER stressors. Elevated expression of Syx5 and Bet1 was associated with increased levels of these proteins in vesicular components, including ER-Golgi-intermediate-compartment/vesicular tubular clusters. In addition, ER stress diminished amyloid ß (Aß) peptide secretion. Knockdown of Syx5 expression enhanced the secretion of Aß peptides under condition without ER stress. Moreover, diminished Aß peptide secretion resulting from ER stress was significantly reversed by Syx5 knockdown. These findings suggest that Syx5 plays important roles in ß-amyloid precursor protein processing and in the ER stress response that precedes apoptotic cell death and may be involved in the crosstalk between these two pathways.


Subject(s)
Amyloid beta-Peptides/metabolism , Endoplasmic Reticulum Stress , Peptide Fragments/metabolism , Qa-SNARE Proteins/metabolism , Animals , Apoptosis , Caspase 3/metabolism , Cell Line, Tumor , Gene Expression , Mice , Proteolysis , Qa-SNARE Proteins/genetics , Rats , Up-Regulation
8.
Proc Natl Acad Sci U S A ; 110(48): 19420-5, 2013 Nov 26.
Article in English | MEDLINE | ID: mdl-24218571

ABSTRACT

In preparation for the metabolic demands of pregnancy, ß cells in the maternal pancreatic islets increase both in number and in glucose-stimulated insulin secretion (GSIS) per cell. Mechanisms have been proposed for the increased ß cell mass, but not for the increased GSIS. Because serotonin production increases dramatically during pregnancy, we tested whether flux through the ionotropic 5-HT3 receptor (Htr3) affects GSIS during pregnancy. Pregnant Htr3a(-/-) mice exhibited impaired glucose tolerance despite normally increased ß cell mass, and their islets lacked the increase in GSIS seen in islets from pregnant wild-type mice. Electrophysiological studies showed that activation of Htr3 decreased the resting membrane potential in ß cells, which increased Ca(2+) uptake and insulin exocytosis in response to glucose. Thus, our data indicate that serotonin, acting in a paracrine/autocrine manner through Htr3, lowers the ß cell threshold for glucose and plays an essential role in the increased GSIS of pregnancy.


Subject(s)
Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Receptors, Serotonin, 5-HT3/metabolism , Serotonin/pharmacology , Signal Transduction/physiology , Animals , Female , Glucose/metabolism , Immunoblotting , Immunohistochemistry , Insulin Secretion , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Fluorescence , Pregnancy , Receptors, Serotonin, 5-HT3/genetics
9.
J Neurochem ; 130(4): 514-25, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24666284

ABSTRACT

Two types of syntaxin 1 isoforms, HPC-1/syntaxin 1A (STX1A) and syntaxin 1B (STX1B), are thought to have similar functions in exocytosis of synaptic vesicles. STX1A(-/-) mice which we generated previously develop normally, possibly because of compensation by STX1B. We produced STX1B(-/-) mice using targeted gene disruption and investigated their phenotypes. STX1B(-/-) mice were born alive, but died before postnatal day 14, unlike STX1A(-/-) mice. Morphologically, brain development in STX1B(-/-) mice was impaired. In hippocampal neuronal culture, the cell viability of STX1B(-/-) neurons was lower than that of WT or STX1A(-/-) neurons after 9 days. Interestingly, STX1B(-/-) neurons survived on WT or STX1A(-/-) glial feeder layers as well as WT neurons. However, STX1B(-/-) glial feeder layers were less effective at promoting survival of STX1B(-/-) neurons. Conditioned medium from WT or STX1A(-/-) glial cells had a similar effect on survival, but that from STX1B(-/-) did not promote survival. Furthermore, brain-derived neurotrophic factor (BDNF) or neurotrophin-3 supported survival of STX1B(-/-) neurons. BDNF localization in STX1B(-/-) glial cells was disrupted, and BDNF secretion from STX1B(-/-) glial cells was impaired. These results suggest that STX1A and STX1B may play distinct roles in supporting neuronal survival by glia. Syntaxin 1A (STX1A) and syntaxin 1B (STX1B) are thought to have similar functions as SNARE proteins. However, we found that STX1A and STX1B play distinct roles in neuronal survival using STX1A(-/-) mice and STX1B(-/-) mice. STX1B was important for neuronal survival, possibly by regulating the secretion of neurotrophic factors, such as BDNF, from glial cells.


Subject(s)
Neurons/physiology , Syntaxin 1/physiology , Animals , Blotting, Western , Brain/growth & development , Brain-Derived Neurotrophic Factor/biosynthesis , Brain-Derived Neurotrophic Factor/pharmacology , Cell Survival/genetics , Cell Survival/physiology , Immunoenzyme Techniques , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Knockout , Munc18 Proteins/metabolism , Neuroglia/physiology , Neurotrophin 3/biosynthesis , Neurotrophin 3/pharmacology , Real-Time Polymerase Chain Reaction , Syntaxin 1/genetics , Transfection
10.
J Cell Sci ; 125(Pt 4): 817-30, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22421360

ABSTRACT

Syntaxin 1C (STX1C), produced by alternative splicing of the stx1A gene, is a soluble syntaxin lacking a SNARE domain and a transmembrane domain. It is unclear how soluble syntaxin can control intracellular membrane trafficking. We found that STX1C affected microtubule (MT) dynamics through its tubulin-binding domain (TBD) and regulated recycling of intracellular vesicles carrying glucose transporter-1 (GLUT1). We demonstrated that the amino acid sequence VRSK of the TBD was important for the interaction between STX1C and tubulin and that wild-type STX1C (STX1C-WT), but not the TBD mutant, reduced the V(max) of glucose transport and GLUT1 translocation to the plasma membrane in FRSK cells. Moreover, by time-lapse analysis, we revealed that STX1C-WT suppressed MT stability and vesicle-transport motility in cells expressing GFP-α-tubulin, whereas TBD mutants had no effect. We also identified that GLUT1 was recycled in the 45 minutes after endocytosis and that GLUT1 vesicles moved along with MTs. Finally, we showed, by a recycling assay and FCM analysis, that STX1C-WT delayed the recycling phase of GLUT1 to PM, without affecting the endocytotic process of GLUT1. These data indicate that STX1C delays the GLUT1 recycling phase by suppressing MT stability and vesicle-transport motility through its TBD, providing the first insight into how soluble syntaxin controls membrane trafficking.


Subject(s)
Cell Membrane/metabolism , Microtubules/metabolism , Syntaxin 1/metabolism , Amino Acid Sequence , Animals , Biological Transport , Cell Line , Cytoplasmic Vesicles/metabolism , Endocytosis , Glucose Transporter Type 1/metabolism , Microtubules/chemistry , Protein Stability , Rats , Solubility , Tubulin/chemistry , Tubulin/metabolism
11.
Cell Rep ; 43(4): 114101, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38613786

ABSTRACT

Syntaxin-1A (stx1a) repression causes a neurodevelopmental disorder phenotype, low latent inhibition (LI) behavior, by disrupting 5-hydroxytryptaminergic (5-HTergic) systems. Herein, we discovered that lysine acetyltransferase (KAT) 3B increases stx1a neuronal transcription and TTK21, a KAT3 activator, induces stx1a transcription and 5-HT release in vitro. Furthermore, glucose-derived CSP-TTK21 could restore decreased stx1a expression, 5-HTergic systems in the brain, and low LI in stx1a (+/-) mice by crossing the blood-brain barrier, whereas the KAT3 inhibitor suppresses stx1a expression, 5-HTergic systems, and LI behaviors in wild-type mice. Finally, in wild-type and stx1a (-/-) mice treated with IKK inhibitors and CSP-TTK21, respectively, we show that KAT3 activator-induced LI improvement is a direct consequence of KAT3B-stx1a pathway, not a side effect. In conclusion, KAT3B can positively regulate stx1a transcription in neurons, and increasing neuronal stx1a expression and 5-HTergic systems by a KAT3 activator consequently improves the low LI behavior in the stx1a ablation mouse model.


Subject(s)
E1A-Associated p300 Protein , Syntaxin 1 , Animals , Mice , Disease Models, Animal , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Phenotype , Serotonin/metabolism , Syntaxin 1/metabolism , Syntaxin 1/genetics , Lysine Acetyltransferases/metabolism , E1A-Associated p300 Protein/metabolism
12.
J Neurosci ; 32(1): 381-9, 2012 Jan 04.
Article in English | MEDLINE | ID: mdl-22219298

ABSTRACT

The membrane protein HPC-1/syntaxin 1A is believed to play a key role in synaptic vesicle exocytosis, and it was recently suggested to be required for synaptic plasticity. Despite evidence for the function of HPC-1/syntaxin 1A in synaptic plasticity, the underlying cellular mechanism is unclear. We found that although fast synaptic transmission and long-term depression were unaffected, HPC-1/syntaxin 1A knock-out (STX1A(-/-)) mice showed impaired long-term potentiation (LTP) in response to theta-burst stimulation in CA1 hippocampal slices. The impairment in LTP was rescued by the application of forskolin, an adenylyl cyclase activator, or more robust stimulation, suggesting that cAMP/protein kinase A signaling was suppressed in these mice. In addition, catecholamine release from the hippocampus was significantly reduced in STX1A(-/-) mice. Because HPC-1/syntaxin 1A regulates exocytosis of dense-core synaptic vesicles, which contain neuromodulatory transmitters such as noradrenaline, dopamine and 5-HT, we examined the effect of neuromodulatory transmitters on LTP induction. Noradrenaline and dopamine enhanced LTP induction in STX1A(-/-) mice, whereas catecholamine depletion reduced LTP induction in wild-type mice. Theses results suggest that HPC-1/syntaxin 1A regulates catecholaminergic systems via exocytosis of dense-core synaptic vesicles, and that deletion of HPC-1/syntaxin 1A causes impairment of LTP induction.


Subject(s)
CA1 Region, Hippocampal/metabolism , Catecholamines/deficiency , Long-Term Potentiation/genetics , Synapses/metabolism , Syntaxin 1/deficiency , Animals , CA1 Region, Hippocampal/drug effects , Catecholamines/pharmacology , Long-Term Potentiation/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Organ Culture Techniques , Synapses/drug effects , Syntaxin 1/antagonists & inhibitors , Syntaxin 1/genetics
13.
Br J Nutr ; 110(9): 1549-58, 2013 Nov 14.
Article in English | MEDLINE | ID: mdl-23537529

ABSTRACT

Recently, the ability of polyphenols to reduce the risk of dementia and Alzheimer's disease (AD) has attracted a great deal of interest. In the present study, we investigated the attenuating effects of oligomerised lychee fruit-derived polyphenol (OLFP, also called Oligonol) on early cognitive impairment. Male senescence-accelerated mouse prone 8 (SAMP8) mice (4 months old) were given OLFP (100 mg/kg per d) for 2 months, and then conditioned fear memory testing was conducted. Contextual fear memory, which is considered hippocampus-dependent memory, was significantly impaired in SAMP8 mice compared with non-senescence-accelerated mice. OLFP attenuated cognitive impairment in SAMP8 mice. Moreover, the results of real-time PCR analysis that followed DNA array analysis in the hippocampus revealed that, compared with SAMP8 mice, the mRNA expression of Wolfram syndrome 1 (Wfs1) was significantly higher in SAMP8 mice administered with OLFP. Wfs1 reportedly helps to protect against endoplasmic reticulum (ER) stress, which is thought to be one of the causes for AD. The expression of Wfs1 was significantly up-regulated in NG108-15 neuronal cells by the treatment with OLFP, and the up-regulation was inhibited by the treatment of the cells with a c-Jun N-terminal kinase-specific inhibitor rather than with an extracellular signal-regulated kinase inhibitor. Moreover, OLFP significantly attenuated the tunicamycin-induced expression of the ER stress marker BiP (immunoglobulin heavy chain-binding protein) in the cells. These results suggest that OLFP has an attenuating effect on early cognitive impairment in SAMP8 mice, and diminishes ER stress in neuronal cells.


Subject(s)
Catechin/analogs & derivatives , Cognition Disorders/drug therapy , Endoplasmic Reticulum Stress/drug effects , Litchi/chemistry , Memory Disorders/drug therapy , Phenols/therapeutic use , Phytotherapy , Polyphenols/therapeutic use , Aging , Alzheimer Disease/metabolism , Alzheimer Disease/prevention & control , Animals , Catechin/pharmacology , Catechin/therapeutic use , Cognition Disorders/metabolism , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum Chaperone BiP , Fruit/chemistry , Heat-Shock Proteins/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Memory/drug effects , Memory Disorders/metabolism , Mice , Mice, Inbred Strains , Neurons/drug effects , Neurons/metabolism , Phenols/pharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Polyphenols/pharmacology , RNA, Messenger/metabolism
14.
J Biol Chem ; 286(37): 32244-50, 2011 Sep 16.
Article in English | MEDLINE | ID: mdl-21768089

ABSTRACT

The Rab27 effector granuphilin/Slp4 is essential for the stable attachment (docking) of secretory granules to the plasma membrane, and it also inhibits subsequent fusion. Granuphilin is thought to mediate these processes through interactions with Rab27 on the granule membrane and with syntaxin-1a on the plasma membrane and its binding partner Munc18-1. Consistent with this hypothesis, both syntaxin-1a- and Munc18-1-deficient secretory cells, as well as granuphilin null cells, have been observed to have a deficit of docked granules. However, to date there has been no direct comparative analysis of the docking defects in those mutant cells. In this study, we morphometrically compared granule-docking states between granuphilin null and syntaxin-1a null pancreatic ß cells derived from mice having the same genetic background. We found that loss of syntaxin-1a does not cause a significant granule-docking defect, in contrast to granuphilin deficiency. Furthermore, we newly generated granuphilin/syntaxin-1a double knock-out mice, characterized their phenotypes, and found that the double mutant mice represent a phenocopy of granuphilin null mice and do not represent phenotypes of syntaxin-1a null mice, including their granule-docking behavior. Because granuphilin binds to syntaxin-2 and syntaxin-3 as well as syntaxin-1a, it likely mediates granule docking through interactions with those multiple syntaxins on the plasma membrane.


Subject(s)
Cell Membrane/metabolism , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Secretory Vesicles/metabolism , Syntaxin 1/metabolism , Vesicular Transport Proteins/metabolism , Animals , Biological Transport/physiology , Cell Line , Cell Membrane/genetics , Insulin/genetics , Insulin-Secreting Cells/cytology , Male , Mice , Mice, Knockout , Munc18 Proteins/genetics , Munc18 Proteins/metabolism , Qa-SNARE Proteins/genetics , Qa-SNARE Proteins/metabolism , Secretory Vesicles/genetics , Syntaxin 1/genetics , Vesicular Transport Proteins/genetics
15.
J Cell Biol ; 177(4): 695-705, 2007 May 21.
Article in English | MEDLINE | ID: mdl-17502420

ABSTRACT

The mechanism of glucose-induced biphasic insulin release is unknown. We used total internal reflection fluorescence (TIRF) imaging analysis to reveal the process of first- and second-phase insulin exocytosis in pancreatic beta cells. This analysis showed that previously docked insulin granules fused at the site of syntaxin (Synt)1A clusters during the first phase; however, the newcomers fused during the second phase external to the Synt1A clusters. To reveal the function of Synt1A in phasic insulin exocytosis, we generated Synt1A-knockout (Synt1A(-/-)) mice. Synt1A(-/-) beta cells showed fewer previously docked granules with no fusion during the first phase; second-phase fusion from newcomers was preserved. Rescue experiments restoring Synt1A expression demonstrated restoration of granule docking status and fusion events. Inhibition of other syntaxins, Synt3 and Synt4, did not affect second-phase insulin exocytosis. We conclude that the first phase is Synt1A dependent but the second phase is not. This indicates that the two phases of insulin exocytosis differ spatially and mechanistically.


Subject(s)
Exocytosis/physiology , Insulin/metabolism , Animals , Cells, Cultured , Insulin Secretion , Islets of Langerhans/metabolism , Male , Mice , Mice, Knockout , Microscopy, Fluorescence
16.
Biochem Biophys Res Commun ; 416(1-2): 125-9, 2011 Dec 09.
Article in English | MEDLINE | ID: mdl-22093827

ABSTRACT

It is well known that exercise prevents and reduces cognitive impairment. In the present study, we focused on exercise training as a tool to prevent cognitive impairment, and searched for novel molecules that may relate to the prevention of cognitive impairment in the hippocampus. Two-month-old senescence-accelerated mouse prone-8 (SAMP8) mice were subjected to voluntary exercise training by running on a wheel for 4 months, and were then assigned a conditioned fear memory test. Moreover, various mRNA levels in the hippocampus were examined by DNA array analysis and real-time PCR. Contextual fear memory in SAMP8 control mice was significantly impaired compared with that in non-senescence mice. Exercise training definitely attenuated such cognitive impairment. The results of real-time PCR analysis that was conducted following DNA array analysis in the hippocampus revealed that, compared with SAMR8 control mice, the expression levels of leucine zipper transcription factor-like protein 1 (Lztfl1) mRNA were significantly higher in SAMP8 mice subjected to exercise training. In addition, the overexpression of Lztfl1 promoted neurite outgrowth in Neuro 2a cells. These results suggest that exercise has a preventive effect on cognitive impairment in SAMP8 mice, and that exercise-induced increase in Lztfl1 induces neurite outgrowth.


Subject(s)
Cognition Disorders/prevention & control , Neurites/physiology , Physical Conditioning, Animal , Transcription Factors/biosynthesis , Animals , Hippocampus/metabolism , Male , Memory , Mice , Mice, Mutant Strains , RNA, Messenger/biosynthesis , RNA, Messenger/metabolism
17.
Behav Brain Res ; 413: 113447, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34224763

ABSTRACT

Several studies have shown that oxytocin (OXT) modulates social behavior. Similarly, monoamines such as dopamine (DA) play a role in regulating social behavior. Previous studies have demonstrated that the soluble N-ethylmaleimide-sensitive fusion attachment protein receptor (SNARE) protein syntaxin 1A (STX1A) regulates the secretion of OXT and monoamines, and that STX1A gene knockout (STX1A KO) mice exhibit atypical social behavior, such as deficient social recognition, due to reduced OXT release. In this study, we analyzed the neural mechanism regulating social behavior by OXT and/or DA using STX1A KO mice as a model animal. We found that OXT directly induced DA release from cultured DA neurons through OXT and V1a receptors. In STX1A KO mice, the atypical social behavior was partially improved by OXT administration, which was inhibited by D1 receptor blockade. In addition, the atypical social behavior in STX1A KO mice was partially improved by facilitation of DAergic signaling with the DA reuptake inhibitor GBR12909. Moreover, the amelioration by GBR12909 was inhibited by OXTR blockade. These results suggest that the reciprocal interaction between the DAergic and OXTergic neuronal systems in the CNS may be important in regulating social behavior.


Subject(s)
Behavioral Symptoms/metabolism , Central Nervous System/metabolism , Chemotactic Factors/metabolism , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Oxytocin/metabolism , Receptors, Oxytocin/metabolism , Social Behavior , Syntaxin 1/metabolism , Animals , Behavioral Symptoms/drug therapy , Cells, Cultured , Central Nervous System/drug effects , Disease Models, Animal , Dopamine Antagonists/pharmacology , Mice , Mice, Knockout , Oxytocin/pharmacology , Piperazines/pharmacology , Receptors, Dopamine D1/antagonists & inhibitors , Receptors, Oxytocin/antagonists & inhibitors , Syntaxin 1/deficiency
18.
Biomolecules ; 11(2)2021 01 23.
Article in English | MEDLINE | ID: mdl-33498722

ABSTRACT

The HPC-1/syntaxin 1A (Stx1a) gene, which is involved in synaptic transmission and neurodevelopmental disorders, is a TATA-less gene with several transcription start sites. It is activated by the binding of Sp1 and acetylated histone H3 to the -204 to +2 core promoter region (CPR) in neuronal cell/tissue. Furthermore, it is depressed by the association of class 1 histone deacetylases (HDACs) to Stx1a-CPR in non-neuronal cell/tissue. To further clarify the factors characterizing Stx1a gene silencing in non-neuronal cell/tissue not expressing Stx1a, we attempted to identify the promoter region forming DNA-protein complex only in non-neuronal cells. Electrophoresis mobility shift assays (EMSA) demonstrated that the -183 to -137 OL2 promoter region forms DNA-protein complex only in non-neuronal fetal rat skin keratinocyte (FRSK) cells which do not express Stx1a. Furthermore, the Yin-Yang 1 (YY1) transcription factor binds to the -183 to -137 promoter region of Stx1a in FRSK cells, as shown by competitive EMSA and supershift assay. Chromatin immunoprecipitation assay revealed that YY1 in vivo associates to Stx1a-CPR in cell/tissue not expressing Stx1a and that trichostatin A treatment in FRSK cells decreases the high-level association of YY1 to Stx1a-CPR in default. Reporter assay indicated that YY1 negatively regulates Stx1a transcription. Finally, mass spectrometry analysis showed that gene silencing factors, including HDAC1, associate onto the -183 to -137 promoter region together with YY1. The current study is the first to report that Stx1a transcription is negatively regulated in a cell/tissue-specific manner by YY1 transcription factor, which binds to the -183 to -137 promoter region together with gene silencing factors, including HDAC.


Subject(s)
Gene Expression Regulation , Gene Silencing , Histone Deacetylases/genetics , Promoter Regions, Genetic , Syntaxin 1/biosynthesis , YY1 Transcription Factor/biosynthesis , Animals , Cell Line, Tumor , Chromatin Immunoprecipitation , Histone Deacetylase Inhibitors/metabolism , Hydroxamic Acids/pharmacology , Mass Spectrometry , Rats , Repressor Proteins/metabolism
19.
Eur J Neurosci ; 32(1): 99-107, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20576034

ABSTRACT

HPC-1/syntaxin 1A (STX1A) is thought to regulate the exocytosis of synaptic vesicles in neurons. In recent human genetic studies, STX1A has been implicated in neuropsychological disorders. To examine whether STX1A gene ablation is responsible for abnormal neuropsychological profiles observed in human psychiatric patients, we analysed the behavioral phenotype of STX1A knockout mice. Abnormal behavior was observed in both homozygotes (STX1A(-/-)) and heterozygotes (STX1A(+/-)) in a social interaction test, a novel object exploring test and a latent inhibition (LI) test, but not in a pre-pulse inhibition test. Interestingly, attenuation of LI, which is closely related to human schizotypic symptoms, was restored by administration of the selective serotonin reuptake inhibitor, fluoxetine, but not by the dopamine reuptake inhibitor, GBR12935, or the noradrenalin reuptake inhibitor, desipramine. We also observed that LI attenuation was restored by DOI (a 5-HT(2A) receptor agonist), but not by 8-OH-DPAT (a 5-HT(1A) receptor agonist), mCPP (a 5-HT(2C) receptor agonist), SKF 38393 (a D(1) receptor agonist), quinpirole (a D(2)/D(3) receptor agonist) or haloperidol (a D(2)/D(3) receptor antagonist). Thus, attenuation of LI is mainly caused by disruption of 5-HT-ergic systems via 5-HT(2A) receptors. In addition, 5-HT release from hippocampal and hypothalamic slices was significantly reduced. Therefore, ablation of STX1A may cause disruption of 5-HT-ergic transmission and induce abnormal behavior.


Subject(s)
Behavior, Animal/physiology , Serotonin/metabolism , Syntaxin 1/genetics , 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology , 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology , Adrenergic Uptake Inhibitors/pharmacology , Amphetamines/pharmacology , Animals , Behavior, Animal/drug effects , Desipramine/pharmacology , Dopamine Agonists/pharmacology , Dopamine Antagonists/pharmacology , Fluoxetine/pharmacology , Haloperidol/pharmacology , Hippocampus/cytology , Hippocampus/metabolism , Humans , Hypothalamus/cytology , Hypothalamus/metabolism , Inhibition, Psychological , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Piperazines/pharmacology , Quinpirole/pharmacology , Receptor, Serotonin, 5-HT2A/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Serotonin Receptor Agonists/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Social Behavior
20.
Neurochem Res ; 34(2): 221-6, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18528755

ABSTRACT

In an earlier study, we showed that mitochondria hyperpolarized after short periods of oxygen-glucose deprivation (OGD), and this response appeared to be associated with subsequent apoptosis or survival. Here, we demonstrated that hyperpolarization following short periods of OGD (30 min; 30OGD group) increased the cytosolic Ca(2+) ([Ca(2+)](c)) buffering capacity in mitochondria. After graded OGD (0 min (control), 30 min, 120 min), rat cultured hippocampal neurons were exposed to glutamate, evoking Ca(2+)influx. The [Ca(2+)](c) level increased sharply, followed by a rapid increase in mitochondrial Ca(2+) [Ca(2+)](m). The increase in the [Ca(2+)](m) level accompanied a reduction in the [Ca(2+)](c) level. After reaching a peak, the [Ca(2+)](c) level decreased more rapidly in the 30OGD group than in the control group. This buffering reaction was pronounced in the 30OGD group, but not in the 120OGD group. The enhanced buffering capacity of the mitochondria may be linked to preconditioning after short-term ischemic episodes.


Subject(s)
Calcium/metabolism , Glucose/metabolism , Hippocampus/metabolism , Mitochondria/metabolism , Neurons/metabolism , Oxygen/metabolism , Animals , Hippocampus/cytology , Membrane Potentials , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL