Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add more filters

Publication year range
1.
Mol Pharm ; 21(4): 1777-1793, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38478900

ABSTRACT

Stroke is the second cause of mortality among adult males and the first cause of death in adult females all around the world. It is also recognized as one of the most important causes of morbidity and dementia in adults. Stenosis or rupture of the only channels of the blood supply from the heart to the brain (carotid arteries) is among the main causes of stroke. In this regard, treatment of the lesions of carotid arteries, including atherosclerosis and aneurysm, could be a huge step in preventing stroke and improving brain performance. Targeted drug delivery by drug-carrying nanoparticles is the latest method for optimal delivery of drug to the damaged parts of the artery. In this study, a wide range of carotid artery lesions, including different percentages of atherosclerosis and aneurysm, were considered. After analyzing the dynamics of the fluid flow in different damaged regions and selecting the magnetic framework with proper ligand (Fe3O4@MOF) as the drug carrier, the size of the particles and their number per cycle were analyzed. Based on the results, the particle size of 100 nm and the use of 300 particles per injection at each cardiac cycle can result in maximum drug delivery to the target site. Then, the effect of the hospital bed angle on drug delivery was investigated. The results showed a unique optimal drug delivery angle for each extent of atherosclerosis or aneurysm. For example, in a 50% aneurysm, drug delivery at an angle of 30° is about 387% higher than that at an angle of 15°. Finally, simulation of real geometry indicated the effectiveness of simple geometry instead of real geometry for the simulation of carotid arteries, which can remarkably decrease the computational time and costs.


Subject(s)
Aneurysm , Atherosclerosis , Stroke , Male , Adult , Female , Humans , Carotid Arteries , Atherosclerosis/drug therapy , Drug Delivery Systems , Stroke/pathology , Aneurysm/pathology
2.
Nanotechnology ; 35(36)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904452

ABSTRACT

Copper/Cuprous oxide/Carbon nanoparticles decorated MXene composite was prepared and subsequently examined for its potential application as a non-enzymatic glucose sensor. To carry out this, initially the Cu MOF/MXene composite was synthesised by the hydrothermal method and was annealed in an unreacted environment at different time intervals. During this process, petal like Cu MOF on MXene loses the organic ligands to form a Cu/Cu2O/C based nanoparticles on MXene. Further, an electrode was fabricated with the developed material for understanding the sensing performance by cyclic voltammetry and chronoamperometry in 0.1 M NaOH solution. Results reveal that the highest weight percentage of copper oxide in the composite (15 min of annealed material) shows a higher electro catalytic activity for sensing glucose molecules due to more active sites with good electron transfer ability in the composite. The formed composite exhibits a wide linear range of 0.001-26.5 mM, with a sensitivity of 762.53µAmM-1cm-2(0.001-10.1 mM), and 397.18µAmM-1cm-2(11.2-26.9 mM) and the limit of detection was 0.103µM. In addition to this, the prepared electrode shows a good reusability, repeatability, selectivity with other interferences, stability (93.65% after 30 days of storage), and feasibility of measuring glucose in real samples. This finding reveals that the metal oxide derived from MOF based nanoparticle on the MXene surface will promote the use of non-enzymatic glucose sensors.


Subject(s)
Copper , Electrodes , Glucose , Nanoparticles , Copper/chemistry , Glucose/analysis , Nanoparticles/chemistry , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Carbon/chemistry , Electrochemical Techniques/methods , Limit of Detection
3.
J Microencapsul ; 41(6): 479-501, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39077800

ABSTRACT

One of the goals of tissue engineering and regenerative medicine is restoring primary living tissue function by manufacturing a 3D microenvironment. One of the main challenges is protecting implanted non-autologous cells or tissues from the host immune system. Cell encapsulation has emerged as a promising technique for this purpose. It involves entrapping cells in biocompatible and semi-permeable microcarriers made from natural or synthetic polymers that regulate the release of cellular secretions. In recent years, droplet-based microfluidic systems have emerged as powerful tools for cell encapsulation in tissue engineering and regenerative medicine. These systems offer precise control over droplet size, composition, and functionality, allowing for creating of microenvironments that closely mimic native tissue. Droplet-based microfluidic systems have extensive applications in biotechnology, medical diagnosis, and drug discovery. This review summarises the recent developments in droplet-based microfluidic systems and cell encapsulation techniques, as well as their applications, advantages, and challenges in biology and medicine. The integration of these technologies has the potential to revolutionise tissue engineering and regenerative medicine by providing a precise and controlled microenvironment for cell growth and differentiation. By overcoming the immune system's challenges and enabling the release of cellular secretions, these technologies hold great promise for the future of regenerative medicine.


Subject(s)
Cell Encapsulation , Regenerative Medicine , Tissue Engineering , Humans , Cell Encapsulation/methods , Regenerative Medicine/methods , Animals , Microfluidics/instrumentation , Microfluidic Analytical Techniques/instrumentation
4.
Biomed Eng Online ; 22(1): 1, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36593487

ABSTRACT

Artificial, de-novo manufactured materials (with controlled nano-sized characteristics) have been progressively used by neuroscientists during the last several decades. The introduction of novel implantable bioelectronics interfaces that are better suited to their biological targets is one example of an innovation that has emerged as a result of advanced nanostructures and implantable bioelectronics interfaces, which has increased the potential of prostheses and neural interfaces. The unique physical-chemical properties of nanoparticles have also facilitated the development of novel imaging instruments for advanced laboratory systems, as well as intelligently manufactured scaffolds and microelectrodes and other technologies designed to increase our understanding of neural tissue processes. The incorporation of nanotechnology into physiology and cell biology enables the tailoring of molecular interactions. This involves unique interactions with neurons and glial cells in neuroscience. Technology solutions intended to effectively interact with neuronal cells, improved molecular-based diagnostic techniques, biomaterials and hybridized compounds utilized for neural regeneration, neuroprotection, and targeted delivery of medicines as well as small chemicals across the blood-brain barrier are all purposes of the present article.


Subject(s)
Nanoparticles , Nanostructures , Nanotechnology , Nanostructures/chemistry , Biocompatible Materials/chemistry , Neurons
5.
Cell Biochem Funct ; 41(5): 517-541, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37282756

ABSTRACT

Hyperglycemia, a distinguishing feature of diabetes mellitus that might cause a diabetic foot ulcer (DFU), is an endocrine disorder that affects an extremely high percentage of people. Having a comprehensive understanding of the molecular mechanisms underlying the pathophysiology of diabetic wound healing can help researchers and developers design effective therapeutic strategies to treat the wound healing process in diabetes patients. Using nanoscaffolds and nanotherapeutics with dimensions ranging from 1 to 100 nm represents a state-of-the-art and viable therapeutic strategy for accelerating the wound healing process in diabetic patients, particularly those with DFU. Nanoparticles can interact with biological constituents and infiltrate wound sites owing to their reduced diameter and enhanced surface area. Furthermore, it is noteworthy that they promote the processes of vascularization, cellular proliferation, cell signaling, cell-to-cell interactions, and the formation of biomolecules that are essential for effective wound healing. Nanomaterials possess the ability to effectively transport and deliver various pharmacological agents, such as nucleic acids, growth factors, antioxidants, and antibiotics, to specific tissues, where they can be continuously released and affect the wound healing process in DFU. The present article elucidates the ongoing endeavors in the field of nanoparticle-mediated therapies for the management of DFU.


Subject(s)
Diabetes Mellitus , Diabetic Foot , Nanoparticles , Humans , Diabetic Foot/drug therapy , Wound Healing , Intercellular Signaling Peptides and Proteins , Nanoparticles/therapeutic use , Nanotechnology , Diabetes Mellitus/drug therapy
6.
Sensors (Basel) ; 23(4)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36850711

ABSTRACT

This paper provides a comprehensive review of the applications of smart meters in the control and optimisation of power grids to support a smooth energy transition towards the renewable energy future. The smart grids become more complicated due to the presence of small-scale low inertia generators and the implementation of electric vehicles (EVs), which are mainly based on intermittent and variable renewable energy resources. Optimal and reliable operation of this environment using conventional model-based approaches is very difficult. Advancements in measurement and communication technologies have brought the opportunity of collecting temporal or real-time data from prosumers through Advanced Metering Infrastructure (AMI). Smart metering brings the potential of applying data-driven algorithms for different power system operations and planning services, such as infrastructure sizing and upgrade and generation forecasting. It can also be used for demand-side management, especially in the presence of new technologies such as EVs, 5G/6G networks and cloud computing. These algorithms face privacy-preserving and cybersecurity challenges that need to be well addressed. This article surveys the state-of-the-art of each of these topics, reviewing applications, challenges and opportunities of using smart meters to address them. It also stipulates the challenges that smart grids present to smart meters and the benefits that smart meters can bring to smart grids. Furthermore, the paper is concluded with some expected future directions and potential research questions for smart meters, smart grids and their interplay.

7.
Appl Microbiol Biotechnol ; 106(11): 4091-4114, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35612630

ABSTRACT

Novel coronavirus (SARS-CoV-2) leads to coronavirus disease 19 (COVID-19), declared as a pandemic that outbreaks within almost 225 countries worldwide. For the time being, numerous mutations have been reported that led to the generation of numerous variants spread more rapidly. This study aims to establish an efficient multi-epitope subunit vaccine that could elicit both T-cell and B-cell responses sufficient to recognize three confirmed surface proteins of the virus. The sequences of the viral surface proteins, e.g., an envelope protein (E), membrane glycoprotein (M), and S1 and S2 domain of spike surface glycoprotein (S), were analyzed by an immunoinformatic approach. Top immunogenic epitopes have been selected based on the assessment of the affinity with MHC class-I and MHC class-II, population coverage, along with conservancy among wild type and new variants of SARS-CoV-2 genomes. Molecular docking and molecular dynamic simulation suggest that the proposed top peptides have the potential to interact with the highest number of both the MHC class I and MHC class II. The epitopes were assembled by the appropriate linkers to form a multi-epitope vaccine. Epitopes used in the vaccine construct are conserved in all the variants evolved till now. This in silico-designed multi-epitope vaccine is highly immunogenic and induces levels of SARS-CoV2-neutralizing antibodies in mice, which is detected by inhibition of cytopathic effect in Vero cell monolayer. Further studies are required to improve its efficiency in the prevention of virus replication in lung tissue, in addition to safety validation as a step for human application to combat SARS-CoV-2 variants. KEY POINTS: • We discovered five T-cell epitopes from three surface proteins of SARS-CoV-2. • These are conserved in the wild-type virus and variants, e.g., beta, delta, and omicron. • The multi-epitope vaccine can induce IgG in mice that can neutralize the virus.


Subject(s)
COVID-19 , Viral Vaccines , Animals , COVID-19/prevention & control , COVID-19 Vaccines/genetics , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte/genetics , Humans , Mice , Molecular Docking Simulation , RNA, Viral , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Subunit/genetics
8.
Mol Divers ; 26(2): 1249-1258, 2022 Apr.
Article in English | MEDLINE | ID: mdl-33978897

ABSTRACT

An effective and proficient process for the synthesis of a variety of thioethers via the one-step reaction of benzyl halides, aryl halides, and thiourea is presented. This strategy is a one-pot procedure to achieve a variety of thioethers without the requirement to thiols as starting compounds. A range of thioethers containing electron donating/electron-withdrawing functional groups were obtained with good to excellent yields under mild conditions. Moreover, the nanocatalyst exhibited excellent recyclability for the reaction, making it more sustainable. One-pot and multi-component synthesis, high yields of final products, green reaction media, high activity of nanocatalyst, simple separation of the products and catalyst, and high regioselectivity are several highlights of this method.


Subject(s)
Schiff Bases , Sulfides , Catalysis , Sulfhydryl Compounds
9.
Mol Divers ; 26(5): 2981-3002, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35235141

ABSTRACT

Angiogenesis is an important and interesting scientific subject in the area of malignant tumours. Current research importance and interest are directed in connection to blood microvessels in cancer cell proliferation, tumour growth, and metastasis. Tyrosine kinases have been intensely implicated as therapeutic targets that affect the angiogenic process in tumour growth. In the last decades, targeting angiogenesis has led to achievements in the therapy of different carcinomas by different mechanisms, such as the utilization of anti-angiogenic small molecule receptor tyrosine kinase inhibitors. In the current review, we aim to track the advancements in the total synthesis of three receptor tyrosine kinase inhibitors (pazopanib, regorafenib and lenvatinib). This review surveys different synthetic routes for these three approved drugs (pazopanib, regorafenib and lenvatinib) which were previously published as patents (2014-2021). The purity of medicines is a very important factor during manufacturing so we have decided to review the purification process of these anticancer medicines as well. It should be noted that the different patents may have reported some procedures with different yields and purities for the synthesis of desired drug and their intermediates. In order to simplify the understanding of the contents of this review article, only the best results reported in each of these patents are reported for the synthesis of desired drug and their intermediates.


Subject(s)
Neoplasms , Humans , Indazoles , Neoplasms/drug therapy , Phenylurea Compounds , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyridines , Pyrimidines , Quinolines , Sulfonamides , Tyrosine/therapeutic use
10.
Andrologia ; 54(8): e14456, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35560246

ABSTRACT

Varieties of studies have been used to investigate the health benefits of Spirulina (Arthrospira platensis); however, more research is needed to examine if its nano form may be utilized to treat or prevent several chronic diseases. So, we designed this study to explore the effect and the cellular intracellular mechanisms by which Arthrospira platensis Nanoparticles (NSP) alleviates the testicular injury induced by diabetes in male Wistar rats. Eighty Wistar male rats (n = 80) were randomly allocated into eight groups. Group 1 is untreated rats (control), Group 2 including STZ-induced diabetic rats with 65 mg/kg body weight STZ (STZ-diabetic), Group 3-5: including diabetic rats treated with NSP1, NSP2, and NSP3 at 0.25, 0.5, and 1 mg/kg body weight, respectively, once daily orally by the aid of gastric gavage for 12 consecutive weeks and groups 6-8 include normal rats received NSP (0.25, 0.5, and 1 mg/kg body weight once daily orally. The identical volume of normal saline was injected into both control and diabetic rats. After 12 weeks of diabetes induction, the rats were killed. According to our findings, NSP administration to diabetic rats enhances the total body weight and the weight of testes and accessory glands; in addition, NSP significantly reduced nitric oxide and malondialdehyde in testicular tissue improved sperm parameters. Intriguingly, it raises testicular GSH and SOD activity by a significant amount (p < 0.05). As well, Oral administration of NSP to diabetic rats resulted in a decrease in the blood glucose levels, HA1C, induced in the diabetic group, which overcame the diabetic complications NSP caused down-regulation of apoptotic genes with upregulation of BCL-2 mRNA expression (p < 0.05) and prominent up-regulation of steroidogenesis genes expression level in testes in comparison to the diabetic rats which resulted in improving the decreased levels of testosterone hormone, FSH, and LH induced by diabetes. In the same way, our histopathological findings support our biochemical and molecular findings; in conclusion, NSP exerted a protective effect against reproductive dysfunction induced by diabetes not only through its high antioxidant and hypoglycemic action but also through its down-regulation of Apoptotic genes and up-regulation of steroidogenesis regulatory genes expression level in diabetic testes.


Subject(s)
Diabetes Mellitus, Experimental , Nanoparticles , Spirulina , Testicular Diseases , Animals , Antioxidants/pharmacology , Body Weight , Diabetes Mellitus, Experimental/metabolism , Male , Oxidative Stress , Rats , Rats, Wistar , Semen/metabolism , Spirulina/chemistry , Spirulina/metabolism , Testicular Diseases/etiology , Testicular Diseases/prevention & control , Testis
11.
Molecules ; 27(15)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35956893

ABSTRACT

Designing new synthetic strategies for indazoles is a prominent topic in contemporary research. The transition-metal-catalyzed C-H activation/annulation sequence has arisen as a favorable tool to construct functionalized indazole derivatives with improved tolerance in medicinal applications, functional flexibility, and structural complexity. In the current review article, we aim to outline and summarize the most common synthetic protocols to use in the synthesis of target indazoles via a transition-metal-catalyzed C-H activation/annulation sequence for the one-step synthesis of functionalized indazole derivatives. We categorized the text according to the metal salts used in the reactions. Some metal salts were used as catalysts, and others may have been used as oxidants and/or for the activation of precatalysts. The roles of some metal salts in the corresponding reaction mechanisms have not been identified. It can be expected that the current synopsis will provide accessible practical guidance to colleagues interested in the subject.


Subject(s)
Indazoles , Transition Elements , Catalysis , Indazoles/chemistry , Metals/chemistry , Salts , Transition Elements/chemistry
12.
Drug Metab Rev ; 53(4): 592-603, 2021 11.
Article in English | MEDLINE | ID: mdl-33561356

ABSTRACT

In the modern age, the struggle to generate appropriate bio-based materials and nano-scaled colloidal particulates for developed application domains, has already resulted in remarkable attempts in the advancement of regulated size and shape, anisotropy, and characteristics of nanostructures. The bottom-up development strategies of components are among the most important science areas throughout nanotechnology, in which the designed building blocks are often utilized to generate novel structures by random self-assembly. In biomedical applications, Janus nanoparticles (JNPs) are necessary. This is due to their effective stimulus-responsive properties, tunable structure, biocompatibility, containing two surfaces with various hydrophobic characteristics and distinct functional groups. Featuring two parts with differing hydrophobicity has been the most critical aspect of the Janus amphiphilic particles. Development of JNPs has been afforded, using imaging agents (e.g. gold (AU) for photoacoustic imaging processing (PAI), silver for surface-enhanced Raman scattering (SERS), and Fe3O4 and MnO2 to magnetic resonance imaging (MRI)). It is also to be mentioned that a number of other properties become salient - properties such as integration imaging factors into JNPs (like quantum dots, fluorescent dyes), multiple imaging methods for screening and diagnosis application can indeed be accomplished. Janus nanostructures have been promising platforms for bioengineering as therapeutic carriers, drug delivery vehicles, and biosensor equipment; they may also be employed for the transport of bioactive hydrophilic and hydrophobic materials. The main production approaches and major advancement of JNPs in the biomedical sector and cancer therapy will be described in this paper.


Subject(s)
Multifunctional Nanoparticles , Nanoparticles , Neoplasms , Gold/chemistry , Humans , Manganese Compounds/therapeutic use , Neoplasms/drug therapy , Oxides/therapeutic use
13.
J Biomed Sci ; 28(1): 49, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34154581

ABSTRACT

Microbubbles are typically 0.5-10 µm in size. Their size tends to make it easier for medication delivery mechanisms to navigate the body by allowing them to be swallowed more easily. The gas included in the microbubble is surrounded by a membrane that may consist of biocompatible biopolymers, polymers, surfactants, proteins, lipids, or a combination thereof. One of the most effective implementation techniques for tiny bubbles is to apply them as a drug carrier that has the potential to activate ultrasound (US); this allows the drug to be released by US. Microbubbles are often designed to preserve and secure medicines or substances before they have reached a certain area of concern and, finally, US is used to disintegrate microbubbles, triggering site-specific leakage/release of biologically active drugs. They have excellent therapeutic potential in a wide range of common diseases. In this article, we discussed microbubbles and their advantageous medicinal uses in the treatment of certain prevalent disorders, including Parkinson's disease, Alzheimer's disease, cardiovascular disease, diabetic condition, renal defects, and finally, their use in the treatment of various forms of cancer as well as their incorporation with nanoparticles. Using microbubble technology as a novel carrier, the ability to prevent and eradicate prevalent diseases has strengthened the promise of effective care to improve patient well-being and life expectancy.


Subject(s)
Contrast Media/adverse effects , Disease Eradication/methods , Drug Delivery Systems/methods , Microbubbles , Ultrasonography
14.
Langmuir ; 37(4): 1551-1562, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33465311

ABSTRACT

Coronary artery disease (CAD) is the prevalent reason of mortality all around the world. Targeting CAD, specifically atherosclerosis, with controlled delivery of micro and nanoparticles, as drug carriers, is a very proficient approach. In this work, a patient-specific and realistic model of an atherosclerotic plaque in the left anterior descending (LAD) artery was created by image-processing of CT-scan images and implementing a finite-element mesh. Next, a fluid-solid interaction simulation considering the physiological boundary conditions was conducted. By considering the simulated force fields and particle-particle interactions, the correlation between injected particles at each cardiac cycle and the surface density of adhered particles over the atherosclerotic plaque (SDP) were examined. For large particles (800 and 1000 nm) the amount of SDP on the plaque increased significantly when the number of the injected particles became higher. However, by increasing the number of the injected particles, for the larger particles (800 and 1000 nm) the increase in SDP was about 50% greater than that of the smaller ones (400 and 600 nm). Furthermore, for constant number of particles, depending on their size, different trends in SDP were observed. Subsequently, the distribution and adhesion of metal-based nanoparticles including SiO2, Fe3O4, NiO2, silver and gold with different properties were simulated. The injection of metal particles with medium density among the considered particles resulted in the highest SDP. Remarkably, the affinity, the geometrical features, and the biophysical factors involved in the adhesion outweighed the effect of difference in the density of particles on the SDP. Finally, the consideration of the lift force in the simulations significantly reduced the SDP and consistently decreased the particle residence time in the studied domain.


Subject(s)
Plaque, Atherosclerotic , Computer Simulation , Coronary Vessels , Drug Carriers , Humans , Particle Size , Plaque, Atherosclerotic/diagnostic imaging , Silicon Dioxide
15.
Sensors (Basel) ; 21(22)2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34833518

ABSTRACT

The universal paradigm shift towards green energy has accelerated the development of modern algorithms and technologies, among them converters such as Z-Source Inverters (ZSI) are playing an important role. ZSIs are single-stage inverters which are capable of performing both buck and boost operations through an impedance network that enables the shoot-through state. Despite all advantages, these inverters are associated with the non-minimum phase feature imposing heavy restrictions on their closed-loop response. Moreover, uncertainties such as parameter perturbation, unmodeled dynamics, and load disturbances may degrade their performance or even lead to instability, especially when model-based controllers are applied. To tackle these issues, a data-driven model-free adaptive controller is proposed in this paper which guarantees stability and the desired performance of the inverter in the presence of uncertainties. It performs the control action in two steps: First, a model of the system is updated using the current input and output signals of the system. Based on this updated model, the control action is re-tuned to achieve the desired performance. The convergence and stability of the proposed control system are proved in the Lyapunov sense. Experiments corroborate the effectiveness and superiority of the presented method over model-based controllers including PI, state feedback, and optimal robust linear quadratic integral controllers in terms of various metrics.

16.
Beilstein J Org Chem ; 17: 1600-1628, 2021.
Article in English | MEDLINE | ID: mdl-34354770

ABSTRACT

Diverse strategies for the efficient and attractive synthesis of a wide variety of relevant 1,4,5-trisubstituted 1,2,3-triazole molecules are reported. The synthesis of this category of diverse fully functionalized 1,2,3-triazoles has become a necessary and unique research subject in modern synthetic organic key transformations in academia, pharmacy, and industry. The current review aims to cover a wide literature survey of numerous synthetic strategies. Recent reports (2017-2021) in the field of 1,4,5-trisubstituted 1,2,3-triazoles are emphasized in this current review.

17.
Drug Metab Rev ; 51(1): 12-41, 2019 02.
Article in English | MEDLINE | ID: mdl-30741033

ABSTRACT

In this Review article, recent progress in matter of graphene oxide (GO) synthesis and its functionalization via a vast range of materials, including small molecules, polymers, and biomolecules, were reported and systematically summarized in order to overcome the inherent drawbacks of GO nanocarriers and thereby make these nanocarriers suitable for delivering chemotherapeutic agents, genes, and short interfering RNAs. Briefly, this work describes current strategies for the large scale production of GO and modification of graphene-based nanocarriers surfaces through practical chemical approaches, improving their biocompatibility and declining their toxicity. It also describes the most relevant cases of study suitable to demonstrate the role of graphene and graphene derivatives (GD) as nanocarrier for anti-cancer drugs and genes (e.g. miRNAs). Moreover, the controlled release mechanisms within the cell compartments and blood pH for targeted therapeutics release in the acidic environment of tumor cells or in intracellular compartments are mentioned and explored.


Subject(s)
Drug Carriers/chemistry , Graphite/chemistry , Nanoparticles/chemistry , Animals , Antineoplastic Agents/chemistry , Drug Delivery Systems/methods , Humans , Nanomedicine/methods
18.
Drug Metab Rev ; 51(1): 91-104, 2019 02.
Article in English | MEDLINE | ID: mdl-30784324

ABSTRACT

In this article, graphene oxide Nano ribbons (GONRs) and its high potential for using in medical fields have been reviewed. Recently, Graphene Nano ribbons (GNRs) has been a field of interest in biological methods and disease treatment such as drug delivery, DNA applications, and photothermal cancer therapies. GNRs demonstrate more efficient properties rather than other graphene-based Nanomaterials due to their larger surface area. These novel properties made them into a remarkable substitute material for biological fields as they have different cytotoxic effects and almost nontoxic to human health and the environment. In this study, some of the significant effects of GNRs such as Geno toxicity effects in human mesenchymal stem cells, DNA assembly, drug delivery agents, and the use of PEGylated GNRs in photothermal cancer therapy has been investigated.


Subject(s)
DNA/chemistry , Graphite/chemistry , Nanoparticles/chemistry , Animals , Drug Delivery Systems/methods , Humans , Nanostructures/chemistry
19.
Drug Metab Rev ; 51(4): 589-611, 2019 11.
Article in English | MEDLINE | ID: mdl-31296075

ABSTRACT

In recent years, core-shell (CS) nanofiber has widely been used as a carrier for controlled drug release. This outstanding attention toward CS nanofiber is mainly due to its tremendous significance in controllable drug release in specific locations. The major advantage of CS nanofibers is forming a highly porous mesh, boosting its performance for many applications, due to its large surface-to-volume ratio. This inherently high ratio has prompted electrospun fibers to be considered one of the best drug-delivery-systems available, with the capacity to enhance properties such as cell attachment, drug loading, and mass transfer. Using electrospun fibers as CS nanofibers to incorporate different cargos such as antibiotics, anticancer agents, proteins, DNA, RNA, living cells, and diverse growth factors would considerably satisfy the need for a universal carrier in the field of nanotechnology. In addition to their high surface area, other benefit included in these nanofibers is the ability to trap drugs, easily controlled morphology, and their biomimetic characteristics. In this review, by taking the best advantages of the preparation and uses of CS nanofibers, a novel work in the domain of the controlled drug delivery by nanofiber-based scaffolds is presented.


Subject(s)
Delayed-Action Preparations/administration & dosage , Drug Delivery Systems/methods , Nanofibers/administration & dosage , Delayed-Action Preparations/chemistry , Humans , Nanofibers/chemistry
20.
Front Chem ; 12: 1361266, 2024.
Article in English | MEDLINE | ID: mdl-38496273

ABSTRACT

Background: Organic dyes often have shorter lifetimes in the excited state, which is a major obstacle to the development of effective photoredox methods. The scientific community has shown a great deal of interest in a certain class of organic chromophores because of their unique characteristics and effectiveness. One characteristic of the molecules under research is thermally activated delayed fluorescence (TADF), which is only observed in molecules with a tiny energy gap (often less than 0.2 eV) between their lowest two excited states, i.e., singlet excited state (S1) and triplet excited state (T1). The extended singlet excited states arising from TADF and the simplicity with which their redox potentials may be altered make the isophthalonitrile family of chromophores an attractive option for organic photocatalyst applications. Methods: The Biginelli reaction between ß-ketoesters, arylaldehydes, and urea/thiourea has been used to build a sustainable technique for the production of 3,4-dihydropyrimidin-2-(1H)-one/thione derivatives. In the present study, the development of a green radical synthesis approach for this class of compounds is addressed in depth. As a photocatalyst, a new halogenated dicyanobenzene-based photosensitizer was employed in this study. As a renewable energy source activated by a blue LED, it was dissolved in ethanol, at room temperature in air atmosphere. The primary objective of this research is to employ a novel donor-acceptor (D-A) based on halogenated cyanoarene that is affordable, easily available, and innovative. Findings: The 3DPAFIPN [2,4,6-tris(diphenylamino)-5-fluoroisophthalonitrile] photocatalyst, a thermally activated delayed fluorescence (TADF), induces single-electron transfer (SET) in response to visible light, offering a straightforward, eco-friendly, and highly efficient process. Additionally, we determined the 3,4-dihydropyrimidin-2-(1H)-one/thione derivatives turnover frequency (TOF) and turnover number (TON). It has also been demonstrated that gram-scale cyclization is a workable method for industrial purposes.

SELECTION OF CITATIONS
SEARCH DETAIL