Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Int J Mol Sci ; 25(16)2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39201507

ABSTRACT

Metronomic chemotherapy with cyclophosphamide (Cpp) has shown promising results in cancer protocols. These lower and prolonged doses have antiangiogenic, pro-cytotoxic, and moderate secondary effects. Molecular iodine (I2) reduces the viability of cancer cells and, with chemotherapeutic agents, activates the antitumoral immune response and diminishes side effects. The present work evaluates the adjuvant of oral I2 with Cpp using a murine model of mammary cancer. Female Sprague Dawley rats with 7,12-dimethylbenzantracene-induced tumors received Cpp intraperitoneal (50 and 70 mg/kg two times/week, iCpp50 and iCpp70) and oral (0.03%; 50 mg/Kg; oCpp50) doses. I2 (0.05%, 50 mg/100 mL) and oCpp50 were offered in drinking water for three weeks. iCpp70 was the most efficient antitumoral dose but generated severe body weight loss and hemorrhagic cystitis (HC). I2 prevented body weight loss, exhibited adjuvant actions with Cpp, decreasing tumor growth, and canceled HC mechanisms, including decreases in vascular endothelial growth factor (VEGF) and Survivin expression. oCpp50 + I2 diminished angiogenic signals (CD34, vessel-length, and VEGF content) and proinflammatory cytokines (interleukin-10 and tumor necrosis factor-alpha) and increased cytotoxic (lymphocytic infiltration, CD8+ cells, Tbet, and interferon-gamma) and antioxidant markers (nuclear erythroid factor-2 and glutathione peroxidase). I2 enhances the effectiveness of oCpp, making it a compelling candidate for a clinical protocol.


Subject(s)
Administration, Metronomic , Cyclophosphamide , Iodine , Rats, Sprague-Dawley , Animals , Cyclophosphamide/pharmacology , Cyclophosphamide/adverse effects , Cyclophosphamide/administration & dosage , Female , Rats , Iodine/administration & dosage , Iodine/pharmacology , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/pathology , Mammary Neoplasms, Experimental/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Disease Progression , Antineoplastic Agents, Alkylating/adverse effects , Antineoplastic Agents, Alkylating/administration & dosage , Antineoplastic Agents, Alkylating/pharmacology
2.
Int J Mol Sci ; 24(19)2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37834351

ABSTRACT

Pancreatic alterations such as inflammation and insulin resistance accompany hypothyroidism. Molecular iodine (I2) exerts antioxidant and differentiation actions in several tissues, and the pancreas is an iodine-uptake tissue. We analyzed the effect of two oral I2 doses on pancreatic disorders in a model of hypothyroidism for 30 days. Adult female rabbits were divided into the following groups: control, moderate oral dose of I2 (0.2 mg/kg, M-I2), high oral dose of I2 (2.0 mg/kg, H-I2), oral dose of methimazole (MMI; 10 mg/kg), MMI + M-I2,, and MMI + H-I2. Moderate or high I2 supplementation did not modify circulating metabolites or pancreatic morphology. The MMI group showed reductions of circulating thyroxine (T4) and triiodothyronine (T3), moderate glucose increments, and significant increases in cholesterol and low-density lipoproteins. Acinar fibrosis, high insulin content, lipoperoxidation, and overexpression of GLUT4 were observed in the pancreas of this group. M-I2 supplementation normalized the T4 and cholesterol, but T3 remained low. Pancreatic alterations were prevented, and nuclear factor erythroid-2-related factor-2 (Nrf2), antioxidant enzymes, and peroxisome proliferator-activated receptor gamma (PPARG) maintained their basal values. In MMI + H-I2, hypothyroidism was avoided, but pancreatic alterations and low PPARG expression remained. In conclusion, M-I2 supplementation reestablishes thyronine synthesis and diminishes pancreatic alterations, possibly related to Nrf2 and PPARG activation.


Subject(s)
Hypothyroidism , Iodine , Animals , Rabbits , Female , Antioxidants/pharmacology , Antioxidants/therapeutic use , NF-E2-Related Factor 2 , PPAR gamma , Hypothyroidism/drug therapy , Hypothyroidism/metabolism , Triiodothyronine/metabolism , Thyroxine/metabolism , Cholesterol
3.
Int J Mol Sci ; 22(16)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34445656

ABSTRACT

Neuroblastoma (Nb), the most common extracranial tumor in children, exhibited remarkable phenotypic diversity and heterogeneous clinical behavior. Tumors with MYCN overexpression have a worse prognosis. MYCN promotes tumor progression by inducing cell proliferation, de-differentiation, and dysregulated mitochondrial metabolism. Cyclophosphamide (CFF) at minimum effective oral doses (metronomic therapy) exerts beneficial actions on chemoresistant cancers. Molecular iodine (I2) in coadministration with all-trans retinoic acid synergizes apoptosis and cell differentiation in Nb cells. This work analyzes the impact of I2 and CFF on the viability (culture) and tumor progression (xenografts) of Nb chemoresistant SK-N-BE(2) cells. Results showed that both molecules induce dose-response antiproliferative effects, and I2 increases the sensibility of Nb cells to CFF, triggering PPARγ expression and acting as a mitocan in mitochondrial metabolism. In vivo oral I2/metronomic CFF treatments showed significant inhibition in xenograft growth, decreasing proliferation (Survivin) and activating apoptosis signaling (P53, Bax/Bcl-2). In addition, I2 decreased the expression of master markers of malignancy (MYCN, TrkB), vasculature remodeling, and increased differentiation signaling (PPARγ and TrkA). Furthermore, I2 supplementation prevented loss of body weight and hemorrhagic cystitis secondary to CFF in nude mice. These results allow us to propose the I2 supplement in metronomic CFF treatments to increase the effectiveness of chemotherapy and reduce side effects.


Subject(s)
Biomarkers, Tumor/metabolism , Cyclophosphamide/pharmacology , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Iodine/pharmacology , Neuroblastoma/drug therapy , Animals , Anti-Infective Agents, Local/pharmacology , Antineoplastic Agents, Alkylating/pharmacology , Apoptosis , Biomarkers, Tumor/genetics , Cell Differentiation , Cell Proliferation , Drug Therapy, Combination , Humans , Male , Mice , Mice, Nude , Neuroblastoma/metabolism , Neuroblastoma/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
4.
Int J Mol Sci ; 22(3)2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33513754

ABSTRACT

Most investigations of iodine metabolism in humans and animals have focused on its role in thyroid function. However, considerable evidence indicates that iodine could also be implicated in the physiopathology of other organs. We review the literature that shows that molecular iodine (I2) exerts multiple and complex actions on the organs that capture it, not including its effects as part of thyroid hormones. This chemical form of iodine is internalized by a facilitated diffusion system that is evolutionary conserved, and its effects appear to be mediated by a variety of mechanisms and pathways. As an oxidized component, it directly neutralizes free radicals, induces the expression of type II antioxidant enzymes, or inactivates proinflammatory pathways. In neoplastic cells, I2 generates iodolipids with nuclear actions that include the activation of apoptotic pathways and the inhibition of markers related to stem cell maintenance, chemoresistance, and survival. Recently, I2 has been postulated as an immune modulator that depending on the cellular context, can function as an inhibitor or activator of immune responses. We propose that the intake of molecular iodine is increased in adults to at least 1 mg/day in specific pathologies to obtain the potential extrathyroid benefits described in this review.


Subject(s)
Antioxidants/pharmacology , Cell Differentiation/drug effects , Immunologic Factors/pharmacology , Iodine/metabolism , Mitochondria/drug effects , Neoplasms/metabolism , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Iodine/pharmacology , Mitochondria/metabolism , Neoplasms/immunology , PPAR gamma/agonists , PPAR gamma/genetics , PPAR gamma/metabolism
5.
Int J Mol Sci ; 22(23)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34884503

ABSTRACT

Individual differences in coping with stress may determine either a vulnerable or resilient phenotype. Therefore, it is important to better understand the biology underlying the behavioral phenotype. We assessed whether individual behavioral phenotype to acute stress is related with the hippocampal expression of glucocorticoid receptor (GR), Nurr1, interleukin-1 beta (IL-1ß) or brain-derived neurotrophic factor (BDNF). Wistar male rats were exposed to forced swimming for 15 min and sacrificed at different times. Behavioral response was analyzed, and it was compared with the gene and protein expression of GR, Nurr1, IL-1ß and BDNF in the hippocampus for each time point. Behavioral phenotyping showed a group with high immobility (vulnerable) while another had low immobility (resilient). No significant differences were found in the Nurr1, IL-1ß and BDNF mRNA levels between resilient and vulnerable rats at different recovery times except for Nr3c1 (gene for GR). However, exposure to stress caused significantly higher levels of GR, Nurr1 and IL-1ß proteins of vulnerable compared to resilient rats. This variability of behavioral phenotypes is associated with a differential molecular response to stress that involves GR, Nurr1, and IL-1ß as mediators in coping with stress. This contributes to identifying biomarkers of susceptibility to stress.


Subject(s)
Behavior, Animal/physiology , Brain-Derived Neurotrophic Factor/metabolism , Hippocampus/metabolism , Interleukin-1beta/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Receptors, Glucocorticoid/metabolism , Stress, Psychological , Swimming , Adaptation, Psychological , Animals , Brain-Derived Neurotrophic Factor/genetics , Disease Models, Animal , Female , Interleukin-1beta/genetics , Male , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Wistar , Receptors, Glucocorticoid/genetics
6.
BMC Cancer ; 19(1): 261, 2019 Mar 22.
Article in English | MEDLINE | ID: mdl-30902074

ABSTRACT

BACKGROUND: The immune system is a crucial component in cancer progression or regression. Molecular iodine (I2) exerts significant antineoplastic effects, acting as a differentiation inductor and immune modulator, but its effects in antitumor immune response are not elucidated. METHODS: The present work analyzed the effect of I2 in human breast cancer cell lines with low (MCF-7) and high (MDA-MB231) metastatic potential under both in vitro (cell proliferation and invasion assay) and in vivo (xenografts of athymic nude mice) conditions. RESULTS: In vitro analysis showed that the 200 µM I2 supplement decreases the proliferation rate in both cell lines and diminishes the epithelial-mesenchymal transition (EMT) profile and the invasive capacity in MDA-MB231. In immunosuppressed mice, the I2 supplement impairs implantation (incidence), tumoral growth, and proliferation of both types of cells. Xenografts of the animals treated with I2 decrease the expression of invasion markers like CD44, vimentin, urokinase plasminogen activator and its receptor, and vascular endothelial growth factor; and increase peroxisome proliferator-activated receptor gamma. Moreover, in mice with xenografts, the I2 supplement increases the circulating level of leukocytes and the number of intratumoral infiltrating lymphocytes, some of them activated as CD8+, suggesting the activation of antitumor immune responses. CONCLUSIONS: I2 decreases the invasive potential of a triple negative basal cancer cell line, and under in vivo conditions the oral supplement of this halogen activates the antitumor immune response, preventing progression of xenografts from laminal and basal mammary cancer cells. These effects allow us to propose iodine supplementation as a possible adjuvant in breast cancer therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Immunity, Cellular/drug effects , Iodine/pharmacology , Animals , Antineoplastic Agents/therapeutic use , Breast Neoplasms/immunology , Breast Neoplasms/pathology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Movement/drug effects , Cell Movement/immunology , Cell Proliferation/drug effects , Female , Forkhead Transcription Factors/genetics , Humans , Iodine/therapeutic use , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Mice, Nude , Mice, Transgenic , Neoplasm Invasiveness/immunology , Neoplasm Invasiveness/prevention & control , Xenograft Model Antitumor Assays
7.
BMC Vet Res ; 14(1): 87, 2018 Mar 12.
Article in English | MEDLINE | ID: mdl-29530037

ABSTRACT

BACKGROUND: Mammary cancer has a high incidence in canines and is an excellent model of spontaneous carcinogenesis. Molecular iodine (I2) exerts antineoplastic effects on different cancer cells activating re-differentiation pathways. In co-administration with anthracyclines, I2 impairs chemoresistance installation and prevents the severity of side effects generated by these antineoplastic drugs. This study is a random and double-blind protocol that analyzes the impact of I2 (10 mg/day) in two administration schemes of Doxorubicin (DOX; 30 mg/m2) in 27 canine patients with cancer of the mammary gland. The standard scheme (sDOX) includes four cycles of DOX administered intravenously for 20 min every 21 days, while the modified scheme (mDOX) consists of more frequent chemotherapy (four cycles every 15 days) with slow infusion (60 min). In both schemes, I2 or placebo (colored water) was supplemented daily throughout the treatment. RESULTS: mDOX attenuated the severity of adverse events (VCOG-CTCAE) in comparison with the sDOX group. The overall tumor response rate (RECIST criteria) for all dogs was 18% (interval of reduction 48-125%), and no significant difference was found between groups. I2 supplementation enhances the antineoplastic effect in mDOX, exhibiting a significant decrease in the tumor epithelial fraction, diminished expression of chemoresistance (MDR1 and Survivin) and invasion (uPA) markers and enhanced expression of the differentiation factor known as peroxisome proliferator-activated receptors type gamma (PPARγ). Significant tumor lymphocytic infiltration was also observed in both I2-supplemented groups. The ten-month survival analysis showed that the entire I2 supplementation (before and after surgery) induced 67-73% of disease-free survival, whereas supplementation in the last period (only after surgery) produced 50% in both schemes. CONCLUSIONS: The mDOX+I2 scheme improves the therapeutic outcome, diminishes the invasive capacity, attenuates the adverse events and increases disease-free survival. These data led us to propose mDOX+I2 as an effective treatment for canine mammary cancer.


Subject(s)
Antineoplastic Agents/therapeutic use , Dog Diseases/drug therapy , Doxorubicin/therapeutic use , Iodine/therapeutic use , Mammary Neoplasms, Animal/drug therapy , Neoadjuvant Therapy/veterinary , Animals , Antineoplastic Agents/administration & dosage , Dogs , Doxorubicin/administration & dosage , Female , Iodine/administration & dosage , Neoadjuvant Therapy/methods
8.
Mol Med ; 22: 1-11, 2016 Sep.
Article in English | MEDLINE | ID: mdl-26928389

ABSTRACT

Prostate cancer cells are responsive to adrenergic and thyroid stimuli. It is well established that ß-adrenergic activation (protein kinase A [PKA]/cAMP response element binding protein [CREB]) promotes cancer progression, but the role of thyroid hormones is poorly understood. We analyzed the effects of ß-adrenergic stimulation (isoproterenol [ISO]) and/or thyroid hormone on neuroendocrine (NE) differentiation and cell invasion, using in vivo (LNCaP tumor) and in vitro models (LNCaP and DU145 human cells). Nude mice were inoculated with LNCaP cells and were treated for 6 wks with ISO (200 µg/d), triiodothyronine (T3, 2.5 µg/d) or both. ISO alone reduced tumor growth but increased tumor expression of cAMP response element (CRE)-dependent genes (real-time polymerase chain reaction, chromogranin A, neuron-specific enolase, survivin, vascular endothelial growth factor [VEGF], urokinase plasmin activator [uPA] and metalloproteinase-9 [MMP-9]) and some proteins related to NE differentiation and/or invasiveness (synaptophysin, VEGF, pCREB). T3 reduced tumor growth and prevented the overexpression of ISO-stimulated factors through a pCREB-independent mechanism. In low invasive LNCaP cells, 50 µmol/L ISO or 100 nmol/L thyroxine (T4) induced the acquisition of NE-like morphology (phase-contrast microscopy), increased VEGF secretion (ELISA) and invasive capacity (Transwell assay), but no synergistic effects were observed after the coadministration of ISO + T4. In contrast, 10 nmol/L T3 alone had no effect, but it prevented the NE-like morphology and invasiveness stimulated by ISO. None of these treatments had any effect on highly invasive DU145 cells. In summary, this study showed that ISO and T4 increase cancer progression, and T3 attenuates ISO-stimulated progression. Further studies are required to determine if changes in the ratio of T4/T3 could be relevant for prostate cancer progression.

9.
Mol Cancer ; 12: 45, 2013 May 24.
Article in English | MEDLINE | ID: mdl-23705792

ABSTRACT

BACKGROUND: Although mammary cancer (MC) is the most common malignant neoplasia in women, the mortality for this cancer has decreased principally because of early detection and the use of neoadjuvant chemotherapy. Of several preparations that cause MC regression, doxorubicin (DOX) is the most active, first-line monotherapeutic. Nevertheless, its use is limited due to the rapid development of chemoresistance and to the cardiotoxicity caused by free radicals. In previous studies we have shown that supplementation with molecular iodine (I2) has a powerful antineoplastic effect in methylnitrosourea (MNU)-induced experimental models of MC. These studies also showed a consistent antioxidant effect of I2 in normal and tumoral tissues. METHODS: Here, we analyzed the effect of I2 in combination with DOX treatment in female Sprague Dawley rats with MNU-induced MC. In the first experiment (short) animals were treated with the therapeutic DOX dose (16 mg/kg) or with lower doses (8 and 4 mg/Kg), in each case with and without 0.05% I2 in drinking water. Iodine treatment began on day 0, a single dose of DOX was injected (ip) on day 2, and the analysis was carried out on day 7. In the second experiment (long) animals with and without iodine supplement were treated with one or two injections of 4 mg/kg DOX (on days 0 and 14) and were analyzed on day 56. RESULTS: At all DOX doses, the short I2 treatment induced adjuvant antineoplastic effects (decreased tumor size and proliferating cell nuclear antigen level) with significant protection against body weight loss and cardiotoxicity (creatine kinase MB, cardiac lipoperoxidation, and heart damage). With long-term I2, mammary tumor tissue became more sensitive to DOX, since a single injection of the lowest dose of DOX (4 mg/Kg) was enough to stop tumor progression and a second DOX4 injection on day 14 caused a significant and rapid decrease in tumor size, decreased the expression of chemoresistance markers (Bcl2 and survivin), and increased the expression of the apoptotic protein Bax and peroxisome proliferator-activated receptor type gamma. CONCLUSIONS: The DOX-I2 combination exerts antineoplastic, chemosensitivity, and cardioprotective effects and could be a promising strategy against breast cancer progression.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Antioxidants/pharmacology , Doxorubicin/pharmacology , Iodine/pharmacology , Mammary Neoplasms, Experimental/drug therapy , Animals , Antibiotics, Antineoplastic/administration & dosage , Antioxidants/administration & dosage , Body Weight , Cardiotonic Agents/administration & dosage , Cardiotonic Agents/pharmacology , Cell Proliferation/drug effects , Chemotherapy, Adjuvant , Doxorubicin/administration & dosage , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Iodine/administration & dosage , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/pathology , Rats , Tumor Burden/drug effects
10.
Prostate ; 73(1): 31-41, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22576883

ABSTRACT

BACKGROUND: Evidence indicates that iodine per se could be implicated in the physiology of several organs that can internalize it. In thyroid and breast cancer, iodine treatments inhibit cell proliferation and induce apoptosis through a direct (mitochondria) and/or indirect effect (iodolipid generation). Here, we determined the uptake of iodide (I(-) ) and iodine (I(2) ), as well as the antiproliferative and apoptotic effects of 6-iodolactone (6-IL) and both forms of iodine in human prostate cells lines. METHODS: Non-cancerous (RWPE-1) and cancerous (LNCaP, DU-145) cells, as well as nude mice xenotransplanted with DU-145 cells were used as cancer models. Iodine uptake was analyzed with radioactive tracers, transporter expression by qRT-PCR, cell proliferation by blue trypan, apoptosis by enzyme immunoassay or fluorescence, BAX and BCL-2 by western-blot, and caspsase 3 by enzymatic assay. RESULTS: All three cell lines take up both forms of iodine. In RWPE-1 cells, I(-) uptake depends on the Na(+) /I(-) symporter (NIS), whereas it was independent of NIS in LNCaP and DU-145 cells. Antiproliferative effects of iodine and 6-IL were dose and time dependent; RWPE-1 was most sensitive to I(-) and 6-IL, whereas LNCaP was more sensitive to I(2) . In the three cell lines both forms of iodine activated the intrinsic apoptotic pathway (increasing the BAX/BCL-2 index and caspases). Iodine supplementation impaired growth of the DU-145 tumor in nude mice. CONCLUSION: Normal and cancerous prostate cells can take up iodine, and depending on the chemical form, it exerts antiproliferative and apoptotic effects both in vitro and in vivo.


Subject(s)
Adenocarcinoma/drug therapy , Antineoplastic Agents/pharmacology , Arachidonic Acids/pharmacology , Iodine/pharmacology , Prostate/drug effects , Prostatic Neoplasms/drug therapy , Adenocarcinoma/metabolism , Adenocarcinoma/secondary , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Gene Expression , Humans , Iodine/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Prostate/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology
11.
Mol Med ; 19: 409-16, 2013 Nov 08.
Article in English | MEDLINE | ID: mdl-24306422

ABSTRACT

Iodine supplementation exerts antitumor effects in several types of cancer. Iodide (I⁻) and iodine (I2) reduce cell proliferation and induce apoptosis in human prostate cancer cells (LNCaP and DU-145). Both chemical species decrease tumor growth in athymic mice xenografted with DU-145 cells. The aim of this study was to analyze the uptake and effects of iodine in a preclinical model of prostate cancer (transgenic adenocarcinoma of the mouse prostate [TRAMP] mice/SV40-TAG antigens), which develops cancer by 12 wks of age. ¹²5I⁻ and ¹²5I2 uptake was analyzed in prostates from wild-type and TRAMP mice of 12 and 24 wks in the presence of perchlorate (inhibitor of the Na⁺/I⁻ symporter [NIS]). NIS expression was quantified by quantitative polymerase chain reaction (qPCR). Mice (6 wks old) were supplemented with 0.125 mg I⁻ plus 0.062 mg I2/mouse/day for 12 or 24 wks. The weight of the genitourinary tract (GUT), the number of acini with lesions, cell proliferation (levels of proliferating cell nuclear antigen [PCNA] by immunohistochemistry), p53 and p21 expression (by qPCR) and apoptosis (relative amount of nucleosomes by enzyme-linked immunosorbent assay) were evaluated. In both age-groups, normal and tumoral prostates take up both forms of iodine, but only I⁻ uptake was blocked by perchlorate. Iodine supplementation prevented the overexpression of NIS in the TRAMP mice, but had no effect on the GUT weight, cell phenotype, proliferation or apoptosis. In TRAMP mice, iodine increased p53 expression but had no effect on p21 (a p53-dependent gene). Our data corroborate NIS involvement in I⁻ uptake and support the notion that another transporter mediates I2 uptake. Iodine did not prevent cancer progression. This result could be explained by a strong inactivation of the p53 pathway by TAG antigens.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Iodides/pharmacokinetics , Iodine/pharmacokinetics , Prostate/metabolism , Prostatic Neoplasms/metabolism , Symporters/metabolism , Animals , Antineoplastic Agents/pharmacology , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Disease Models, Animal , Iodides/pharmacology , Iodine/administration & dosage , Iodine/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Perchlorates/metabolism , Perchlorates/pharmacology , Proliferating Cell Nuclear Antigen/analysis , Prostate/drug effects , Prostate/pathology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Receptors, Tumor Necrosis Factor, Member 25/genetics , Receptors, Tumor Necrosis Factor, Member 25/metabolism , Symporters/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
12.
Br J Nutr ; 110(12): 2207-15, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23800456

ABSTRACT

Increasing evidence suggests that alterations in early nutrition programme physiological changes in adulthood. In the present study, we determined the effects of undernutrition during gestation and lactation on the programming of thyroid function in adult rat offspring. Perinatal undernutrition was achieved by a 40% food restriction in female Wistar rats from the mating day to weaning. On postpartum day 21, the offspring of the control and food-restricted dams were weaned and given free access to a commercial diet until adulthood. The results showed that undernourished rats exhibited decreased 3,5,3'-triiodothyronine (T3) levels but had normal thyroxine (T4) and thyrotropin (TSH) levels at weaning; on day 90, these rats displayed a significant flip, exhibiting normalised T3 (total and free) and total T4 levels, but low free T4 and persistently higher TSH levels, which were maintained even on postnatal day 140. This profile was accompanied by a scarce fat depot, a lower RMR and an exacerbated sympathetic brown adipose tissue (BAT) tone (deiodinase type 2 expression) in basal conditions. Moreover, when a functional challenge (cold exposure) was applied, the restricted group exhibited partial changes in TSH (29 v. 100%) and T4 (non-response v. 17%) levels, a significant decrease in leptin levels (75 v. 32%) and the maintenance of a sympathetic BAT over-response (higher noradrenaline levels) in comparison with the control group. The findings of the present study suggest that undernutrition during the perinatal period produces permanent changes in the hypothalamus-pituitary-thyroid axis with consequent low body weight and decreased RMR and facultative thermogenesis. We hypothesise that these changes predispose individuals to exhibiting adult subclinical hypothyroidism.


Subject(s)
Hypothyroidism/etiology , Infant Nutritional Physiological Phenomena , Malnutrition/complications , Prenatal Nutritional Physiological Phenomena , Thyroid Gland/physiopathology , Thyroid Hormones/blood , Adipose Tissue, Brown/metabolism , Animals , Basal Metabolism , Body Weight , Cold Temperature , Female , Humans , Hypothyroidism/blood , Hypothyroidism/metabolism , Hypothyroidism/physiopathology , Infant, Newborn , Lactation , Leptin/blood , Malnutrition/blood , Malnutrition/physiopathology , Norepinephrine/blood , Pregnancy , Prenatal Exposure Delayed Effects , Rats , Rats, Wistar , Thermogenesis
13.
Mol Cell Endocrinol ; 572: 111957, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37192707

ABSTRACT

Molecular iodine (I2) prevents oxidative stress and prostate hyperplasia induced by hyperandrogenism and reduces cell viability in prostate cancer cell lines. Here, we aimed to evaluate the protective effect of I2 and testosterone (T) on hyperestrogenism-induced prostate inflammation. Additionally, the effects of I2 and/or tumor necrosis factor (TNF) on cell viability and interleukin 6 (IL6) secretion were evaluated in a prostate cancer cell line (DU145). We also investigated whether the effects of I2 on viability are peroxisome proliferator-activated receptor gamma (PPARG)-dependent. Castrated (Cx) rats received pellets of either 17ß estradiol (E2) or E2 and T and were treated with I2 (0.05%) in the drinking water for four weeks. The experimental groups were sham, Cx, Cx + E2, Cx + E2+I2, Cx + E2+T, and Cx + E2+T + I2. As expected, inflammation was triggered in the Cx + E2 group (high inflammation score; increase in TNF and transcriptional activity of RELA [nuclear factor-kappa B p65 subunit]), and this effect was diminished in the Cx + E2+T group (medium inflammation score and decrease in TNF). The lowest inflammation score (decrease of TNF and RELA and increase of PPARG) was obtained in the Cx + E2+T + I2 group. In DU145 cells, I2 (400 µM) and TNF (10 ng/ml) additively reduced cell viability, and I2 reduced the production of TNF-stimulated IL6. The PPARG antagonist (GW9662) did not inhibit the effects of I2 on the loss of cell viability. In summary, our data suggest that I2 and T exert a synergistic anti-inflammatory action on the normal prostate, and the interrelationship between I2 and TNF leads to anti-proliferative effects in DU145 cells. PPARG does not seem to participate in the I2-induced cell viability loss in the prostate.


Subject(s)
Iodine , Prostatic Neoplasms , Male , Humans , Rats , Animals , Prostate/pathology , Iodine/pharmacology , PPAR gamma , Interleukin-6/pharmacology , Prostatic Neoplasms/metabolism , Testosterone/pharmacology , Tumor Necrosis Factor-alpha/pharmacology , Estradiol/pharmacology , Inflammation/pathology , Cell Line
14.
Endocr Connect ; 11(2)2022 02 14.
Article in English | MEDLINE | ID: mdl-35041618

ABSTRACT

Thyroid hormones (THs) are involved in the development and function of the male reproductive system, but their effects on the prostate have been poorly studied. This work reviews studies related to the interrelationship between the thyroid and the prostate. The information presented here is based upon bibliographic searches in PubMed using the following search terms: prostate combined with thyroid hormone or triiodothyronine, thyroxine, hypothyroidism, hyperthyroidism, or deiodinase. We identified and searched 49 articles directly related to the issue, and discarded studies related to endocrine disruptors. The number of publications has grown in the last 20 years, considering that one of the first studies was published in 1965. This review provides information based on in vitro studies, murine models, and clinical protocols in patients with thyroid disorders. Studies indicate that THs regulate different aspects of growth, metabolism, and prostate pathology, whose global effect depends on total and/or free concentrations of THs in serum, local bioavailability, and the endocrine androgen/thyronine context.

15.
Nutrients ; 14(3)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35277074

ABSTRACT

Pancreatitis has been implicated in the development and progression of type 2 diabetes and cancer. The pancreas uptakes molecular iodine (I2), which has anti-inflammatory and antioxidant effects. The present work analyzes whether oral I2 supplementation prevents the pancreatic alterations promoted by low doses of streptozotocin (STZ). CD1 mice (12 weeks old) were divided into the following groups: control; STZ (20 mg/kg/day, i.p. for five days); I2 (0.2 mg/Kg/day in drinking water for 15 days); and combined (STZ + I2). Inflammation (Masson's trichrome and periodic acid-Schiff stain), hyperglycemia, decreased ß-cells and increased α-cells in pancreas were observed in male and female animals with STZ. These animals also showed pancreatic increases in immune cells and inflammation markers as tumor necrosis factor-alpha, transforming growth factor-beta and inducible nitric oxide synthase with a higher amount of activated pancreatic stellate cells (PSCs). The I2 supplement prevented the harmful effect of STZ, maintaining normal pancreatic morphometry and functions. The elevation of the nuclear factor erythroid-2 (Nrf2) and peroxisome proliferator-activated receptor type gamma (PPARγ) contents was associated with the preservation of normal glycemia and lipoperoxidation. In conclusion, a moderated supplement of I2 prevents the deleterious effects of STZ in the pancreas, possibly through antioxidant and antifibrotic mechanisms including Nrf2 and PPARγ activation.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Iodine , Animals , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/prevention & control , Diabetes Mellitus, Type 2/prevention & control , Dietary Supplements , Female , Iodine/pharmacology , Male , Mice , Pancreas , Streptozocin
16.
Biol Reprod ; 84(1): 118-23, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20811014

ABSTRACT

Thyronines are essential for the development of the male reproductive system, including the prostate gland. Metabolically active 3,5,3' triiodothyronine (T(3)) is generated mainly by the extrathyroidal, enzymatic 5'deiodination of the prohormone thyroxine (T(4)), which is catalyzed by deiodinases type 1 (D1) and type 2 (D2). Prostate D1 activity is highly expressed during puberty and declines with age, but continuous, long-term sexual activity prevents this reduction. The aims of this study were to characterize the changes in prostatic D1 activity in response to consecutive ejaculations and to determine whether sympathetic input participates in the local T(3) generation (D1 activity). D1 activity was analyzed in prostates of sexually experienced, 4-mo-old male rats after one to five ejaculations. D1 activity, T(3) concentrations, and the T(3)-dependent gene ornithine decarboxylase (Odc) were measured after the fourth ejaculation in prostates of intact, sham, and sympathectomized (Smpx, hypogastric nerve) rats. D1 activity was evaluated by the radio-iodine-release method; T(3) was measured by radioimmunoassay and Odc expression by real-time PCR. Data showed a gradual increase of prostate D1 activity in response to consecutive ejaculations. The highest activity was found after the fourth ejaculation, and it decreased after the fifth. The increase of prostate D1 activity after ejaculation was blocked in Smpx males as compared to intact or sham animals. The changes in D1 activity correlate with prostatic T(3) concentrations and Odc expression. Circulating levels of T(3) were not affected by consecutive ejaculations or by Smpx. These findings indicate that the postejaculatory increase in prostatic generation of T(3) depends on sympathetic input.


Subject(s)
Adrenergic Fibers/physiology , Ejaculation/physiology , Prostate/innervation , Prostate/metabolism , Triiodothyronine/metabolism , Animals , Copulation/physiology , Male , Rats , Rats, Wistar
17.
Biomolecules ; 11(10)2021 10 12.
Article in English | MEDLINE | ID: mdl-34680134

ABSTRACT

Molecular iodine (I2) induces apoptotic, antiangiogenic, and antiproliferative effects in breast cancer cells. Little is known about its effects on the tumor immune microenvironment. We studied the effect of oral (5 mg/day) I2 supplementation alone (I2) or together with conventional chemotherapy (Cht+I2) on the immune component of breast cancer tumors from a previously published pilot study conducted in Mexico. RNA-seq, I2 and Cht+I2 samples showed significant increases in the expression of Th1 and Th17 pathways. Tumor immune composition determined by deconvolution analysis revealed significant increases in M0 macrophages and B lymphocytes in both I2 groups. Real-time RT-PCR showed that I2 tumors overexpress T-BET (p = 0.019) and interferon-gamma (IFNγ; p = 0.020) and silence tumor growth factor-beta (TGFß; p = 0.049), whereas in Cht+I2 tumors, GATA3 is silenced (p = 0.014). Preliminary methylation analysis shows that I2 activates IFNγ gene promoter (by increasing its unmethylated form) and silences TGFß in Cht+I2. In conclusion, our data showed that I2 supplements induce the activation of the immune response and that when combined with Cht, the Th1 pathways are stimulated. The molecular mechanisms involved in these responses are being analyzed, but preliminary data suggest that methylation/demethylation mechanisms could also participate.


Subject(s)
Breast Neoplasms/drug therapy , GATA3 Transcription Factor/genetics , Interferon-gamma/genetics , Iodine/administration & dosage , Transforming Growth Factor beta1/genetics , Adult , Aged , Angiogenesis Inhibitors/administration & dosage , Apoptosis/drug effects , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Female , Humans , Immunity/genetics , Iodine/adverse effects , Macrophages/drug effects , Macrophages/immunology , Mexico , Middle Aged , RNA-Seq , Th1 Cells/drug effects , Th1 Cells/immunology , Th17 Cells/drug effects , Th17 Cells/immunology , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
18.
Ultrasound Med Biol ; 46(3): 649-659, 2020 03.
Article in English | MEDLINE | ID: mdl-31883734

ABSTRACT

We evaluated the effect of oral molecular iodine supplementation and shock wave application under three different conditions on human MDA-MB231 cancer cell xenografts. After tumor volume reached 1 cm3, mice were randomly assigned to groups and treated for 3 weeks. The results revealed that high-dose shock wave treatment (150 shock waves at a pressure of 21.7 MPa, SW150/21.7) generated tissue lesions without decreasing tumor growth, canceled the antineoplastic action of iodine and promoted pro-tumor conditions (increased hypoxia-induced factor [HIF] and vascular endothelial growth factor [VEGF]). In contrast, moderate (SW35/21.7) and low (SW35/9.9) doses of shock waves had significant antineoplastic effects and, in combination with iodine supplement, attenuated the aggressiveness of these cells by decreasing expression of the markers of stem cells (CD44 and Sox2) and invasion (HIF and VEGF). These results allow us to propose the combination of shock waves and iodine as a possible adjuvant in breast cancer therapy.


Subject(s)
Breast Neoplasms/therapy , High-Energy Shock Waves/therapeutic use , Iodine/therapeutic use , Animals , Combined Modality Therapy , Female , Heterografts , Humans , Mice , Neoplasm Transplantation , Random Allocation
19.
Endocr Relat Cancer ; 27(12): 699-710, 2020 12.
Article in English | MEDLINE | ID: mdl-33112807

ABSTRACT

Neuroblastoma (NB) is the most common solid childhood tumor, and all-trans retinoic acid (ATRA) is used as a treatment to decrease minimal residual disease. Molecular iodine (I2) induces differentiation and/or apoptosis in several neoplastic cells through activation of PPARγ nuclear receptors. Here, we analyzed whether the coadministration of I2 and ATRA increases the efficacy of NB treatment. ATRA-sensitive (SH-SY5Y), partially-sensitive (SK-N-BE(2)), and non-sensitive (SK-N-AS) NB cells were used to analyze the effect of I2 and ATRA in vitro and in xenografts (Foxn1 nu/nu mice), exploring actions on cellular viability, differentiation, and molecular responses. In the SH-SY5Y cells, 200 µM I2 caused a 100-fold (0.01 µM) reduction in the antiproliferative dose of ATRA and promoted neurite extension and neural marker expression (tyrosine hydroxylase (TH) and tyrosine kinase receptor alpha (Trk-A)). In SK-N-AS, the I2 supplement sensitized these cells to 0.1 µM ATRA, increasing the ATRA-receptor (RARα) and PPARγ expression, and decreasing the Survivin expression. The I2 supplement increased the mitochondrial membrane potential in SK-N-AS suggesting the participation of mitochondrial-mediated mechanisms involved in the sensibilization to ATRA. In vivo, oral I2 supplementation (0.025%) synergized the antitumor effect of ATRA (1.5 mg/kg BW) and prevented side effects (body weight loss and diarrhea episodes). The immunohistochemical analysis showed that I2 supplementation decreased the intratumoral vasculature (CD34). We suggest that the I2 + ATRA combination should be studied in preclinical and clinical trials to evaluate its potential adjuvant effect in addition to conventional treatments.


Subject(s)
Antineoplastic Agents/therapeutic use , Iodine/metabolism , Neuroblastoma/drug therapy , Tretinoin/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Humans , Mice , Tretinoin/pharmacology
20.
J Endocrinol ; 247(3): 225-238, 2020 12.
Article in English | MEDLINE | ID: mdl-33112811

ABSTRACT

Thyroxine (T4) promotes cell proliferation and tumor growth in prostate cancer models, but it is unknown if the increase in the triiodothyronine (T3)/T4 ratio could attenuate prostate tumor development. We assessed T3 effects on thyroid response, histology, proliferation, and apoptosis in the prostate of wild-type (WT) and TRAMP (transgenic adenocarcinoma of the mouse prostate) mice. Physiological doses of T3 were administered in the drinking water (2.5, 5 and 15 µg/100 g body weight) for 6 weeks. None of the doses modified the body weight or serum levels of testosterone, but all of them reduced serum T4 levels by 50%, and the highest dose increased the T3/T4 ratio in TRAMP. In WT, the highest dose of T3 decreased cyclin D1 levels (immunohistochemistry) but did not modify prostate weight or alter the epithelial morphology. In TRAMP, this dose reduced tumor growth by antiproliferative mechanisms independent of apoptosis, but it did not modify the intraluminal or fibromuscular invasion of tumors. In vitro, in the LNCaP prostate cancer cell line, we found that both T3 and T4 increased the number of viable cells (Trypan blue assay), and only T4 response was fully blocked in the presence of an integrin-binding inhibitor peptide (RGD, arginine-glycine-aspartate). In summary, our data show that the prostate was highly sensitive to physiological T3 doses and suggest that in vivo, an increase in the T3/T4 ratio could be associated with the reduced weight of prostate tumors. Longitudinal studies are required to understand the role of thyroid hormones in prostate cancer progression.


Subject(s)
Adenocarcinoma/blood , Body Weight/physiology , Prostatic Neoplasms/blood , Thyroxine/blood , Triiodothyronine/blood , Adenocarcinoma/pathology , Animals , Apoptosis/drug effects , Body Weight/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Male , Mice , Prostatic Neoplasms/pathology , Testosterone/blood , Triiodothyronine/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL