Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Physiol Heart Circ Physiol ; 314(1): H68-H81, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28939651

ABSTRACT

Notch receptor signaling is active during cardiac development and silenced in myocytes after birth. Conversely, outward K+ Kv currents progressively appear in postnatal myocytes leading to shortening of the action potential (AP) and acquisition of the mature electrical phenotype. In the present study, we tested the possibility that Notch signaling modulates the electrical behavior of cardiomyocytes by interfering with Kv currents. For this purpose, the effects of Notch receptor activity on electrophysiological properties of myocytes were evaluated using transgenic mice with inducible expression of the Notch1 intracellular domain (NICD), the functional fragment of the activated Notch receptor, and in neonatal myocytes after inhibition of the Notch transduction pathway. By patch clamp, NICD-overexpressing cells presented prolonged AP duration and reduced upstroke amplitude, properties that were coupled with reduced rapidly activating Kv and fast Na+ currents, compared with cells obtained from wild-type mice. In cultured neonatal myocytes, inhibition of the proteolitic release of NICD with a γ-secretase antagonist increased transcript levels of the Kv channel-interacting proteins 2 (KChIP2) and enhanced the density of Kv currents. Collectively, these results indicate that Notch signaling represents an important regulator of the electrophysiological behavior of developing and adult myocytes by repressing, at least in part, repolarizing Kv currents. NEW & NOTEWORTHY We investigated the effects of Notch receptor signaling on the electrical properties of cardiomyocytes. Our results indicate that the Notch transduction pathway interferes with outward K+ Kv currents, critical determinants of the electrical repolarization of myocytes.


Subject(s)
Myocytes, Cardiac/metabolism , Potassium Channels, Voltage-Gated/metabolism , Potassium/metabolism , Receptor, Notch1/metabolism , Signal Transduction , Animals , Cells, Cultured , Female , Kinetics , Kv Channel-Interacting Proteins/genetics , Kv Channel-Interacting Proteins/metabolism , Male , Membrane Potentials , Mice, Inbred C57BL , Mice, Transgenic , Potassium Channels, Voltage-Gated/genetics , Receptor, Notch1/genetics , Sodium/metabolism
2.
Am J Physiol Heart Circ Physiol ; 312(1): H150-H161, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27881388

ABSTRACT

Diabetes and other metabolic conditions characterized by elevated blood glucose constitute important risk factors for cardiovascular disease. Hyperglycemia targets myocardial cells rendering ineffective mechanical properties of the heart, but cellular alterations dictating the progressive deterioration of cardiac function with metabolic disorders remain to be clarified. In the current study, we examined the effects of hyperglycemia on cardiac function and myocyte physiology by employing mice with high blood glucose induced by administration of streptozotocin, a compound toxic to insulin-producing ß-cells. We found that hyperglycemia initially delayed the electrical recovery of the heart, whereas cardiac function became defective only after ~2 mo with this condition and gradually worsened with time. Prolonged hyperglycemia was associated with increased chamber dilation, thinning of the left ventricle (LV), and myocyte loss. Cardiomyocytes from hyperglycemic mice exhibited defective Ca2+ transients before the appearance of LV systolic defects. Alterations in Ca2+ transients involved enhanced spontaneous Ca2+ releases from the sarcoplasmic reticulum (SR), reduced cytoplasmic Ca2+ clearance, and declined SR Ca2+ load. These defects have important consequences on myocyte contraction, relaxation, and mechanisms of rate adaptation. Collectively, our data indicate that hyperglycemia alters intracellular Ca2+ homeostasis in cardiomyocytes, hindering contractile activity and contributing to the manifestation of the diabetic cardiomyopathy. NEW & NOTEWORTHY: We have investigated the effects of hyperglycemia on cardiomyocyte physiology and ventricular function. Our results indicate that defective Ca2+ handling is a critical component of the progressive deterioration of cardiac performance of the diabetic heart.


Subject(s)
Calcium/metabolism , Diabetes Mellitus, Experimental/metabolism , Homeostasis , Hyperglycemia/metabolism , Myocytes, Cardiac/metabolism , Ventricular Dysfunction, Left/physiopathology , Action Potentials , Animals , Caffeine/pharmacology , Central Nervous System Stimulants/pharmacology , Diabetes Mellitus, Experimental/complications , Echocardiography , Electrocardiography , Female , Isolated Heart Preparation , Male , Mice , Myocytes, Cardiac/drug effects , Patch-Clamp Techniques , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/etiology
3.
Circ Res ; 116(1): 150-66, 2015 Jan 02.
Article in English | MEDLINE | ID: mdl-25552694

ABSTRACT

This review article discusses the mechanisms of cardiomyogenesis in the adult heart. They include the re-entry of cardiomyocytes into the cell cycle; dedifferentiation of pre-existing cardiomyocytes, which assume an immature replicating cell phenotype; transdifferentiation of hematopoietic stem cells into cardiomyocytes; and cardiomyocytes derived from activation and lineage specification of resident cardiac stem cells. The recognition of the origin of cardiomyocytes is of critical importance for the development of strategies capable of enhancing the growth response of the myocardium; in fact, cell therapy for the decompensated heart has to be based on the acquisition of this fundamental biological knowledge.


Subject(s)
Heart/growth & development , Hematopoietic Stem Cells/physiology , Myocytes, Cardiac/physiology , Organogenesis/physiology , Adult , Animals , Cell Differentiation/physiology , Humans
4.
Am J Physiol Heart Circ Physiol ; 310(7): H873-90, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26801307

ABSTRACT

Studies of myocardial aging are complex and the mechanisms involved in the deterioration of ventricular performance and decreased functional reserve of the old heart remain to be properly defined. We have studied a colony of beagle dogs from 3 to 14 yr of age kept under a highly regulated environment to define the effects of aging on the myocardium. Ventricular, myocardial, and myocyte function, together with anatomical and structural properties of the organ and cardiomyocytes, were evaluated. Ventricular hypertrophy was not observed with aging and the structural composition of the myocardium was modestly affected. Alterations in the myocyte compartment were identified in aged dogs, and these factors negatively interfere with the contractile reserve typical of the young heart. The duration of the action potential is prolonged in old cardiomyocytes contributing to the slower electrical recovery of the myocardium. Also, the remodeled repolarization of cardiomyocytes with aging provides inotropic support to the senescent muscle but compromises its contractile reserve, rendering the old heart ineffective under conditions of high hemodynamic demand. The defects in the electrical and mechanical properties of cardiomyocytes with aging suggest that this cell population is an important determinant of the cardiac senescent phenotype. Collectively, the delayed electrical repolarization of aging cardiomyocytes may be viewed as a critical variable of the aging myopathy and its propensity to evolve into ventricular decompensation under stressful conditions.


Subject(s)
Action Potentials , Aging/physiology , Myocytes, Cardiac/physiology , Ventricular Function , Animals , Dogs , Female , Hemodynamics , Male
5.
Circ Res ; 114(1): 41-55, 2014 Jan 03.
Article in English | MEDLINE | ID: mdl-24170267

ABSTRACT

RATIONALE: Hypoxia favors stem cell quiescence, whereas normoxia is required for stem cell activation, but whether cardiac stem cell (CSC) function is regulated by the hypoxic/normoxic state of the cell is currently unknown. OBJECTIVE: A balance between hypoxic and normoxic CSCs may be present in the young heart, although this homeostatic control may be disrupted with aging. Defects in tissue oxygenation occur in the old myocardium, and this phenomenon may expand the pool of hypoxic CSCs, which are no longer involved in myocyte renewal. METHODS AND RESULTS: Here, we show that the senescent heart is characterized by an increased number of quiescent CSCs with intact telomeres that cannot re-enter the cell cycle and form a differentiated progeny. Conversely, myocyte replacement is controlled only by frequently dividing CSCs with shortened telomeres; these CSCs generate a myocyte population that is chronologically young but phenotypically old. Telomere dysfunction dictates their actual age and mechanical behavior. However, the residual subset of quiescent young CSCs can be stimulated in situ by stem cell factor reversing the aging myopathy. CONCLUSIONS: Our findings support the notion that strategies targeting CSC activation and growth interfere with the manifestations of myocardial aging in an animal model. Although caution has to be exercised in the translation of animal studies to human beings, our data strongly suggest that a pool of functionally competent CSCs persists in the senescent heart and that this stem cell compartment can promote myocyte regeneration effectively, partly correcting the aging myopathy.


Subject(s)
Aging/drug effects , Cardiomyopathies/metabolism , Hypoxia/metabolism , Myoblasts, Cardiac/metabolism , Proto-Oncogene Proteins c-kit/metabolism , Stem Cell Factor/pharmacology , Stem Cell Niche , Aging/metabolism , Animals , Cardiomyopathies/drug therapy , Cardiomyopathies/pathology , Cell Cycle , Cell Lineage , Cell Proliferation , Cellular Senescence/drug effects , Hypoxia/pathology , Mice , Mice, Inbred C57BL , Myoblasts, Cardiac/drug effects , Myoblasts, Cardiac/physiology , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Stem Cell Factor/therapeutic use , Telomere Homeostasis
6.
Circulation ; 129(2): 157-72, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24249720

ABSTRACT

BACKGROUND: The efficacy of bypass surgery in patients with ischemic cardiomyopathy is not easily predictable; preoperative clinical conditions may be similar, but the outcome may differ significantly. We hypothesized that the growth reserve of cardiac stem cells (CSCs) and circulating cytokines promoting CSC activation are critical determinants of ventricular remodeling in this patient population. METHODS AND RESULTS: To document the growth kinetics of CSCs, population-doubling time, telomere length, telomerase activity, and insulin-like growth factor-1 receptor expression were measured in CSCs isolated from 38 patients undergoing bypass surgery. Additionally, the blood levels of insulin-like growth factor-1, hepatocyte growth factor, and vascular endothelial growth factor were evaluated. The variables of CSC growth were expressed as a function of the changes in wall thickness, chamber diameter and volume, ventricular mass-to-chamber volume ratio, and ejection fraction, before and 12 months after surgery. A high correlation was found between indices of CSC function and cardiac anatomy. Negative ventricular remodeling was not observed if CSCs retained a significant growth reserve. The high concentration of insulin-like growth factor-1 systemically pointed to the insulin-like growth factor-1-insulin-like growth factor-1 receptor system as a major player in the adaptive response of the myocardium. hepatocyte growth factor, a mediator of CSC migration, was also high in these patients preoperatively, as was vascular endothelial growth factor, possibly reflecting the vascular growth needed before bypass surgery. Conversely, a decline in CSC growth was coupled with wall thinning, chamber dilation, and depressed ejection fraction. CONCLUSIONS: The telomere-telomerase axis, population-doubling time, and insulin-like growth factor-1 receptor expression in CSCs, together with a high circulating level of insulin-like growth factor-1, represent a novel biomarker able to predict the evolution of ischemic cardiomyopathy following revascularization.


Subject(s)
Coronary Artery Bypass , Myocardial Ischemia/pathology , Myocardial Ischemia/surgery , Myocardium/pathology , Stem Cells/pathology , Aged , Biomarkers/blood , Cell Proliferation , Cells, Cultured , Cytokines/blood , Female , Follow-Up Studies , Hepatocyte Growth Factor/blood , Humans , Male , Middle Aged , Myocardial Ischemia/blood , Predictive Value of Tests , Receptor, IGF Type 1/blood , Stem Cells/ultrastructure , Telomerase/physiology , Telomere/ultrastructure , Treatment Outcome , Vascular Endothelial Growth Factor A/blood
7.
Stem Cells ; 32(3): 674-83, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24022988

ABSTRACT

Transplantation of culture-expanded adult stem/progenitor cells often results in poor cellular engraftment, survival, and migration into sites of tissue injury. Mesenchymal cells including fibroblasts and stromal cells secrete factors that protect injured tissues, promote tissue repair, and support many types of stem/progenitor cells in culture. We hypothesized that secreted factors in conditioned medium (CdM) from adult bone marrow-derived multipotent stromal cells (MSCs) could be used to prime adult cardiac stem/progenitor cells (CSCs/CPCs) and improve graft success after myocardial infarction (MI). Incubation of adult rat CPCs in CdM from human MSCs isolated by plastic adherence or by magnetic sorting against CD271 (a.k.a., p75 low-affinity nerve growth factor receptor; p75MSCs) induced phosphorylation of STAT3 and Akt in CPCs, supporting their proliferation under normoxic conditions and survival under hypoxic conditions (1% oxygen). Priming CSCs with 30× p75MSC CdM for 30 minutes prior to transplantation into subepicardial tissue 1 day after MI markedly increased engraftment compared with vehicle priming. Screening CdM with neutralizing/blocking antibodies identified connective tissue growth factor (CTGF) and Insulin as key factors in p75MSC CdM that protected CPCs. Human CTGF peptide (CTGF-D4) and Insulin synergistically promoted CPC survival during hypoxia in culture. Similar to CdM priming, priming of CSCs with CTGF-D4 and Insulin for 30 minutes prior to transplantation promoted robust engraftment, survival, and migration of CSC derivatives at 1 week and 1 month after MI. Our results indicate that short-term priming of human CSCs with CTGF-D4 and Insulin may improve graft success and cardiac regeneration in patients with MI.


Subject(s)
Myocardial Infarction/therapy , Myocardium/pathology , Stem Cell Transplantation , Stem Cells/cytology , Stem Cells/metabolism , Adult , Animals , Cattle , Cell Differentiation/drug effects , Cell Hypoxia/drug effects , Cell Line , Cell Proliferation/drug effects , Connective Tissue Growth Factor/metabolism , Culture Media, Conditioned/pharmacology , Enzyme Activation/drug effects , Humans , Infusions, Intra-Arterial , Insulin/metabolism , Ligands , Multipotent Stem Cells/cytology , Myocardial Infarction/pathology , Protective Agents/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , STAT3 Transcription Factor/metabolism , Stem Cells/drug effects , Stem Cells/enzymology , Stromal Cells/cytology , Stromal Cells/drug effects
8.
Circulation ; 128(20): 2211-23, 2013 Nov 12.
Article in English | MEDLINE | ID: mdl-24141256

ABSTRACT

BACKGROUND: Aging negatively impacts on the function of resident human cardiac progenitor cells (hCPCs). Effective regeneration of the injured heart requires mobilization of hCPCs to the sites of damage. In the young heart, signaling by the guidance receptor EphA2 in response to the ephrin A1 ligand promotes hCPC motility and improves cardiac recovery after infarction. METHODS AND RESULTS: We report that old hCPCs are characterized by cell-autonomous inhibition of their migratory ability ex vivo and impaired translocation in vivo in the damaged heart. EphA2 expression was not decreased in old hCPCs; however, the elevated level of reactive oxygen species in aged cells induced post-translational modifications of the EphA2 protein. EphA2 oxidation interfered with ephrin A1-stimulated receptor auto-phosphorylation, activation of Src family kinases, and caveolin-1-mediated internalization of the receptor. Cellular aging altered the EphA2 endocytic route, affecting the maturation of EphA2-containing endosomes and causing premature signal termination. Overexpression of functionally intact EphA2 in old hCPCs corrected the defects in endocytosis and downstream signaling, enhancing cell motility. Based on the ability of phenotypically young hCPCs to respond efficiently to ephrin A1, we developed a novel methodology for the prospective isolation of live hCPCs with preserved migratory capacity and growth reserve. CONCLUSIONS: Our data demonstrate that the ephrin A1/EphA2 pathway may serve as a target to facilitate trafficking of hCPCs in the senescent myocardium. Importantly, EphA2 receptor function can be implemented for the selection of hCPCs with high therapeutic potential, a clinically relevant strategy that does not require genetic manipulation of stem cells.


Subject(s)
Adult Stem Cells/physiology , Aging/physiology , Cell Movement/physiology , Myocardium/cytology , Receptor, EphA2/metabolism , Signal Transduction/physiology , Adult , Adult Stem Cells/cytology , Aged , Cells, Cultured , Endocytosis/physiology , Ephrin-A1/metabolism , Female , Humans , Male , Middle Aged , Receptor, EphA2/genetics , Regeneration/physiology , Transferrin/metabolism
9.
Circulation ; 128(12): 1286-97, 2013 Sep 17.
Article in English | MEDLINE | ID: mdl-23983250

ABSTRACT

BACKGROUND: Little is known about the function of inositol 1,4,5-trisphosphate receptors (IP3Rs) in the adult heart experimentally. Moreover, whether these Ca(2+) release channels are present and play a critical role in human cardiomyocytes remains to be defined. IP3Rs may be activated after Gαq-protein-coupled receptor stimulation, affecting Ca(2+) cycling, enhancing myocyte performance, and potentially favoring an increase in the incidence of arrhythmias. METHODS AND RESULTS: IP3R function was determined in human left ventricular myocytes, and this analysis was integrated with assays in mouse myocytes to identify the mechanisms by which IP3Rs influence the electric and mechanical properties of the myocardium. We report that IP3Rs are expressed and operative in human left ventricular myocytes. After Gαq-protein-coupled receptor activation, Ca(2+) mobilized from the sarcoplasmic reticulum via IP3Rs contributes to the decrease in resting membrane potential, prolongation of the action potential, and occurrence of early afterdepolarizations. Ca(2+) transient amplitude and cell shortening are enhanced, and extrasystolic and dysregulated Ca(2+) elevations and contractions become apparent. These alterations in the electromechanical behavior of human cardiomyocytes are coupled with increased isometric twitch of the myocardium and arrhythmic events, suggesting that Gαq-protein-coupled receptor activation provides inotropic reserve, which is hampered by electric instability and contractile abnormalities. Additionally, our findings support the notion that increases in Ca(2+) load by IP3Rs promote Ca(2+) extrusion by forward-mode Na(+)/Ca(2+) exchange, an important mechanism of arrhythmic events. CONCLUSIONS: The Gαq-protein/coupled receptor/IP3R axis modulates the electromechanical properties of the human myocardium and its propensity to develop arrhythmias.


Subject(s)
Action Potentials/physiology , Calcium Signaling/physiology , Heart Failure/physiopathology , Inositol 1,4,5-Trisphosphate Receptors/physiology , Myocytes, Cardiac/physiology , Adult , Animals , Arrhythmias, Cardiac/physiopathology , Cells, Cultured , Female , GTP-Binding Protein alpha Subunits, Gq-G11/physiology , Heart Failure/genetics , Heart Ventricles/cytology , Humans , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Male , Mice , Mice, Inbred C57BL , Middle Aged , Myocardial Contraction/physiology , Myocytes, Cardiac/metabolism , Ryanodine Receptor Calcium Release Channel/physiology , Sarcoplasmic Reticulum/physiology , Signal Transduction/physiology
10.
N Engl J Med ; 364(19): 1795-806, 2011 May 12.
Article in English | MEDLINE | ID: mdl-21561345

ABSTRACT

BACKGROUND: Although progenitor cells have been described in distinct anatomical regions of the lung, description of resident stem cells has remained elusive. METHODS: Surgical lung-tissue specimens were studied in situ to identify and characterize human lung stem cells. We defined their phenotype and functional properties in vitro and in vivo. RESULTS: Human lungs contain undifferentiated human lung stem cells nested in niches in the distal airways. These cells are self-renewing, clonogenic, and multipotent in vitro. After injection into damaged mouse lung in vivo, human lung stem cells form human bronchioles, alveoli, and pulmonary vessels integrated structurally and functionally with the damaged organ. The formation of a chimeric lung was confirmed by detection of human transcripts for epithelial and vascular genes. In addition, the self-renewal and long-term proliferation of human lung stem cells was shown in serial-transplantation assays. CONCLUSIONS: Human lungs contain identifiable stem cells. In animal models, these cells participate in tissue homeostasis and regeneration. They have the undemonstrated potential to promote tissue restoration in patients with lung disease. (Funded by the National Institutes of Health.).


Subject(s)
Lung/cytology , Stem Cells/physiology , Adult , Animals , Clone Cells , Female , Humans , Lung/embryology , Lung/physiology , Mice , Mice, Inbred C57BL , Pluripotent Stem Cells , Proto-Oncogene Proteins c-kit/analysis , Regeneration , Stem Cell Transplantation , Stem Cells/chemistry
11.
Circ Res ; 110(5): 701-15, 2012 Mar 02.
Article in English | MEDLINE | ID: mdl-22275487

ABSTRACT

RATIONALE: Embryonic and fetal myocardial growth is characterized by a dramatic increase in myocyte number, but whether the expansion of the myocyte compartment is dictated by activation and commitment of resident cardiac stem cells (CSCs), division of immature myocytes or both is currently unknown. OBJECTIVE: In this study, we tested whether prenatal cardiac development is controlled by activation and differentiation of CSCs and whether division of c-kit-positive CSCs in the mouse heart is triggered by spontaneous Ca(2+) oscillations. METHODS AND RESULTS: We report that embryonic-fetal c-kit-positive CSCs are self-renewing, clonogenic and multipotent in vitro and in vivo. The growth and commitment of c-kit-positive CSCs is responsible for the generation of the myocyte progeny of the developing heart. The close correspondence between values computed by mathematical modeling and direct measurements of myocyte number at E9, E14, E19 and 1 day after birth strongly suggests that the organogenesis of the embryonic heart is dependent on a hierarchical model of cell differentiation regulated by resident CSCs. The growth promoting effects of c-kit-positive CSCs are triggered by spontaneous oscillations in intracellular Ca(2+), mediated by IP3 receptor activation, which condition asymmetrical stem cell division and myocyte lineage specification. CONCLUSIONS: Myocyte formation derived from CSC differentiation is the major determinant of cardiac growth during development. Division of c-kit-positive CSCs in the mouse is promoted by spontaneous Ca(2+) spikes, which dictate the pattern of stem cell replication and the generation of a myocyte progeny at all phases of prenatal life and up to one day after birth.


Subject(s)
Cell Differentiation/physiology , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Heart/embryology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , Proto-Oncogene Proteins c-kit/metabolism , Animals , Calcium/metabolism , Calcium Signaling/physiology , Cells, Cultured , Embryo Culture Techniques , Inositol 1,4,5-Trisphosphate Receptors/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Animal , Models, Theoretical , Organogenesis/physiology , Proto-Oncogene Proteins c-kit/genetics
12.
Circ Res ; 111(7): 894-906, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-22851539

ABSTRACT

RATIONALE: According to the immortal DNA strand hypothesis, dividing stem cells selectively segregate chromosomes carrying the old template DNA, opposing accumulation of mutations resulting from nonrepaired replication errors and attenuating telomere shortening. OBJECTIVE: Based on the premise of the immortal DNA strand hypothesis, we propose that stem cells retaining the old DNA would represent the most powerful cells for myocardial regeneration. METHODS AND RESULTS: Division of human cardiac stem cells (hCSCs) by nonrandom and random segregation of chromatids was documented by clonal assay of bromodeoxyuridine-tagged hCSCs. Additionally, their growth properties were determined by a series of in vitro and in vivo studies. We report that a small class of hCSCs retain during replication the mother DNA and generate 2 daughter cells, which carry the old and new DNA, respectively. hCSCs with immortal DNA form a pool of nonsenescent cells with longer telomeres and higher proliferative capacity. The self-renewal and long-term repopulating ability of these cells was shown in serial-transplantation assays in the infarcted heart; these cells created a chimeric organ, composed of spared rat and regenerated human cardiomyocytes and coronary vessels, leading to a remarkable restoration of cardiac structure and function. The documentation that hCSCs divide by asymmetrical and symmetrical chromatid segregation supports the view that the human heart is a self-renewing organ regulated by a compartment of resident hCSCs. CONCLUSIONS: The impressive recovery in ventricular hemodynamics and anatomy mediated by clonal hCSCs carrying the "mother" DNA underscores the clinical relevance of this stem cell class for the management of heart failure in humans.


Subject(s)
Chromatids/physiology , Chromosome Segregation/physiology , Heart/physiology , Myocardial Infarction/therapy , Myocardium/cytology , Regeneration/physiology , Stem Cell Transplantation , Stem Cells/cytology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Bromodeoxyuridine , Cell Proliferation , Cells, Cultured , Child , Child, Preschool , Chromatids/ultrastructure , DNA/physiology , Female , Humans , In Vitro Techniques , Infant , Male , Middle Aged , Models, Animal , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Rats , Rats, Inbred F344 , Stem Cells/physiology , Telomere/ultrastructure , Young Adult
13.
Circ Res ; 111(10): 1286-96, 2012 Oct 26.
Article in English | MEDLINE | ID: mdl-22914647

ABSTRACT

RATIONALE: Various types of viable stem cells have been reported to result in modest improvement in cardiac function after acute myocardial infarction. The mechanisms for improvement from different stem cell populations remain unknown. OBJECTIVE: To determine whether irradiated (nonviable) embryonic stem cells (iESCs) improve postischemic cardiac function without adverse consequences. METHODS AND RESULTS: After coronary artery ligation-induced cardiac infarction, either conditioned media or male murine or male human iESCs were injected into the penumbra of ischemic myocardial tissue of female mice or female rhesus macaque monkeys, respectively. Murine and human iESCs, despite irradiation doses that prevented proliferation and induced cell death, significantly improved cardiac function and decreased infarct size compared with untreated or media-treated controls. Fluorescent in situ hybridization of the Y chromosome revealed disappearance of iESCs within the myocardium, whereas 5-bromo-2'-deoxyuridine assays revealed de novo in vivo cardiomyocyte DNA synthesis. Microarray gene expression profiling demonstrated an early increase in metabolism, DNA proliferation, and chromatin remodeling pathways, and a decrease in fibrosis and inflammatory gene expression compared with media-treated controls. CONCLUSIONS: As a result of irradiation before injection, ex vivo and in vivo iESC existence is transient, yet iESCs provide a significant improvement in cardiac function after acute myocardial infarction. The mechanism(s) of action of iESCs seems to be related to cell-cell exchange, paracrine factors, and a scaffolding effect between iESCs and neighboring host cardiomyocytes.


Subject(s)
Embryonic Stem Cells/cytology , Myocardial Infarction/pathology , Myocardial Infarction/therapy , Myocardium/pathology , Myocytes, Cardiac/cytology , Stem Cell Transplantation/methods , Animals , Blood Pressure/physiology , Cell Culture Techniques/methods , Cell Proliferation , Cells, Cultured , Coculture Techniques , Embryonic Stem Cells/physiology , Embryonic Stem Cells/radiation effects , Female , Fibroblasts/cytology , Fibroblasts/physiology , Graft Survival/physiology , Humans , Macaca mulatta , Mice , Mice, Inbred ICR , Mice, Inbred NOD , Mice, SCID , Myocardial Contraction/physiology , Myocardial Infarction/physiopathology , Myocytes, Cardiac/physiology , Transcriptome , Transplantation, Heterologous
14.
Am J Respir Crit Care Med ; 188(3): 370-5, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23713908

ABSTRACT

The National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health convened the Cell Therapy for Lung Disease Working Group on November 13-14, 2012, to review and formulate recommendations for future research directions. The workshop brought together investigators studying basic mechanisms and the roles of cell therapy in preclinical models of lung injury and pulmonary vascular disease, with clinical trial experts in cell therapy for cardiovascular diseases and experts from the NHLBI Production Assistance for Cell Therapy program. The purpose of the workshop was to discuss the current status of basic investigations in lung cell therapy, to identify some of the scientific gaps in current knowledge regarding the potential roles and mechanisms of cell therapy in the treatment of lung diseases, and to develop recommendations to the NHLBI and the research community on scientific priorities and practical steps that would lead to first-in-human trials of lung cell therapy.


Subject(s)
Biomedical Research/methods , Cell- and Tissue-Based Therapy/methods , Lung Diseases/therapy , National Heart, Lung, and Blood Institute (U.S.) , Humans , United States
15.
Circulation ; 126(11 Suppl 1): S54-64, 2012 Sep 11.
Article in English | MEDLINE | ID: mdl-22965994

ABSTRACT

BACKGROUND: SCIPIO is a first-in-human, phase 1, randomized, open-label trial of autologous c-kit(+) cardiac stem cells (CSCs) in patients with heart failure of ischemic etiology undergoing coronary artery bypass grafting (CABG). In the present study, we report the surgical aspects and interim cardiac magnetic resonance (CMR) results. METHODS AND RESULTS: A total of 33 patients (20 CSC-treated and 13 control subjects) met final eligibility criteria and were enrolled in SCIPIO. CSCs were isolated from the right atrial appendage harvested and processed during surgery. Harvesting did not affect cardiopulmonary bypass, cross-clamp, or surgical times. In CSC-treated patients, CMR showed a marked increase in both LVEF (from 27.5 ± 1.6% to 35.1 ± 2.4% [P=0.004, n=8] and 41.2 ± 4.5% [P=0.013, n=5] at 4 and 12 months after CSC infusion, respectively) and regional EF in the CSC-infused territory. Infarct size (late gadolinium enhancement) decreased after CSC infusion (by manual delineation: -6.9 ± 1.5 g [-22.7%] at 4 months [P=0.002, n=9] and -9.8 ± 3.5 g [-30.2%] at 12 months [P=0.039, n=6]). LV nonviable mass decreased even more (-11.9 ± 2.5 g [-49.7%] at 4 months [P=0.001] and -14.7 ± 3.9 g [-58.6%] at 12 months [P=0.013]), whereas LV viable mass increased (+11.6 ± 5.1 g at 4 months after CSC infusion [P=0.055] and +31.5 ± 11.0 g at 12 months [P=0.035]). CONCLUSIONS: Isolation of CSCs from cardiac tissue obtained in the operating room is feasible and does not alter practices during CABG surgery. CMR shows that CSC infusion produces a striking improvement in both global and regional LV function, a reduction in infarct size, and an increase in viable tissue that persist at least 1 year and are consistent with cardiac regeneration. CLINICAL TRIAL REGISTRATION: This study is registered with clinicaltrials.gov, trial number NCT00474461.


Subject(s)
Heart Failure/surgery , Myocardial Infarction/surgery , Stem Cell Transplantation , Atrial Appendage/cytology , Cell Survival , Combined Modality Therapy , Coronary Artery Bypass , Feasibility Studies , Heart/physiology , Heart Failure/etiology , Heart Ventricles/pathology , Humans , Magnetic Resonance Imaging , Myocardial Infarction/complications , Myocardial Infarction/pathology , Myocytes, Cardiac/pathology , Proto-Oncogene Proteins c-kit/analysis , Recovery of Function , Regeneration , Transplantation, Autologous , Ventricular Function, Left
16.
Circulation ; 126(15): 1869-81, 2012 Oct 09.
Article in English | MEDLINE | ID: mdl-22955965

ABSTRACT

BACKGROUND: Two opposite views of cardiac growth are currently held; one views the heart as a static organ characterized by a large number of cardiomyocytes that are present at birth and live as long as the organism, and the other views the heart a highly plastic organ in which the myocyte compartment is restored several times during the course of life. METHODS AND RESULTS: The average age of cardiomyocytes, vascular endothelial cells (ECs), and fibroblasts and their turnover rates were measured by retrospective (14)C birth dating of cells in 19 normal hearts 2 to 78 years of age and in 17 explanted failing hearts 22 to 70 years of age. We report that the human heart is characterized by a significant turnover of ventricular myocytes, ECs, and fibroblasts, physiologically and pathologically. Myocyte, EC, and fibroblast renewal is very high shortly after birth, decreases during postnatal maturation, remains relatively constant in the adult organ, and increases dramatically with age. From 20 to 78 years of age, the adult human heart entirely replaces its myocyte, EC, and fibroblast compartment ≈8, ≈6, and ≈8 times, respectively. Myocyte, EC, and fibroblast regeneration is further enhanced with chronic heart failure. CONCLUSIONS: The human heart is a highly dynamic organ that retains a remarkable degree of plasticity throughout life and in the presence of chronic heart failure. However, the ability to regenerate cardiomyocytes, vascular ECs, and fibroblasts cannot prevent the manifestations of myocardial aging or oppose the negative effects of ischemic and idiopathic dilated cardiomyopathy.


Subject(s)
Heart Failure/physiopathology , Muscle Development/physiology , Myocytes, Cardiac/physiology , Adolescent , Adult , Aged , Aging , Child , Child, Preschool , Endothelial Cells/physiology , Fibroblasts/physiology , Heart/physiology , Humans , Middle Aged , Myocytes, Cardiac/cytology , Regeneration , Tissue Donors , Young Adult
18.
Circ Res ; 109(8): 941-61, 2011 Sep 30.
Article in English | MEDLINE | ID: mdl-21960726

ABSTRACT

For nearly a century, the human heart has been viewed as a terminally differentiated postmitotic organ in which the number of cardiomyocytes is established at birth, and these cells persist throughout the lifespan of the organ and organism. However, the discovery that cardiac stem cells live in the heart and differentiate into the various cardiac cell lineages has changed profoundly our understanding of myocardial biology. Cardiac stem cells regulate myocyte turnover and condition myocardial recovery after injury. This novel information imposes a reconsideration of the mechanisms involved in myocardial aging and the progression of cardiac hypertrophy to heart failure. Similarly, the processes implicated in the adaptation of the infarcted heart have to be dissected in terms of the critical role that cardiac stem cells and myocyte regeneration play in the restoration of myocardial mass and ventricular function. Several categories of cardiac progenitors have been described but, thus far, the c-kit-positive cell is the only class of resident cells with the biological and functional properties of tissue specific adult stem cells.


Subject(s)
Heart Diseases/physiopathology , Myocardium/cytology , Myocytes, Cardiac/physiology , Stem Cells/physiology , Adult Stem Cells/cytology , Adult Stem Cells/physiology , Animals , Cell Differentiation/physiology , Cell Enlargement , Humans , Myocytes, Cardiac/cytology , Stem Cells/cytology
19.
Circ Res ; 108(9): 1071-83, 2011 Apr 29.
Article in English | MEDLINE | ID: mdl-21415392

ABSTRACT

RATIONALE: Understanding the mechanisms that regulate trafficking of human cardiac stem cells (hCSCs) may lead to development of new therapeutic approaches for the failing heart. OBJECTIVE: We tested whether the motility of hCSCs in immunosuppressed infarcted animals is controlled by the guidance system that involves the interaction of Eph receptors with ephrin ligands. METHODS AND RESULTS: Within the cardiac niches, cardiomyocytes expressed preferentially the ephrin A1 ligand, whereas hCSCs possessed the EphA2 receptor. Treatment of hCSCs with ephrin A1 resulted in the rapid internalization of the ephrin A1-EphA2 complex, posttranslational modifications of Src kinases, and morphological changes consistent with the acquisition of a motile cell phenotype. Ephrin A1 enhanced the motility of hCSCs in vitro, and their migration in vivo following acute myocardial infarction. At 2 weeks after infarction, the volume of the regenerated myocardium was 2-fold larger in animals injected with ephrin A1-activated hCSCs than in animals receiving control hCSCs; this difference was dictated by a greater number of newly formed cardiomyocytes and coronary vessels. The increased recovery in myocardial mass with ephrin A1-treated hCSCs was characterized by further restoration of cardiac function and by a reduction in arrhythmic events. CONCLUSIONS: Ephrin A1 promotes the motility of EphA2-positive hCSCs, facilitates their migration to the area of damage, and enhances cardiac repair. Thus, in situ stimulation of resident hCSCs with ephrin A1 or their ex vivo activation before myocardial delivery improves cell targeting to sites of injury, possibly providing a novel strategy for the management of the diseased heart.


Subject(s)
Ephrin-A1/genetics , Ephrin-A2/genetics , Hematopoietic Stem Cells/cytology , Myocardial Infarction/physiopathology , Myocytes, Cardiac/cytology , Animals , Cell Adhesion/physiology , Cell Membrane/metabolism , Cell Movement/physiology , Cytoplasm/metabolism , Ephrin-A1/metabolism , Ephrin-A2/metabolism , Gene Expression/physiology , Green Fluorescent Proteins/genetics , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myocardial Infarction/pathology , Myocardial Infarction/therapy , Rats , Rats, Inbred F344 , Tachycardia, Ventricular/pathology , Tachycardia, Ventricular/physiopathology , Tachycardia, Ventricular/therapy
20.
Circ Res ; 108(7): 857-61, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21330601

ABSTRACT

RATIONALE: Two categories of cardiac stem cells (CSCs) with predominantly myogenic (mCSC) and vasculogenic (vCSC) properties have been characterized in the human heart. However, it is unknown whether functionally competent CSCs of both classes are present in the myocardium of patients affected by end-stage cardiac failure, and whether these cells can be harvested from relatively small myocardial samples. OBJECTIVE: To establish whether a clinically relevant number of mCSCs and vCSCs can be isolated and expanded from endomyocardial biopsies of patients undergoing cardiac transplantation or left ventricular assist device implantation. METHODS AND RESULTS: Endomyocardial biopsies were collected with a bioptome from the right side of the septum of explanted hearts or the apical LV core at the time of left ventricular assist device implantation. Two to 5 biopsies from each patient were enzymatically dissociated, and, after expansion, cells were sorted for c-kit (mCSCs) or c-kit and KDR (vCSCs) and characterized. mCSCs and vCSCs constituted 97% and 3% of the c-kit population, respectively. Population doubling time averaged 27 hours in mCSCs and vCSCs; 5×10(6) mCSCs and vCSCs were obtained in 28 and 41 days, respectively. Both CSC classes possessed significant growth reserve as documented by high telomerase activity and relatively long telomeres. mCSCs formed mostly cardiomyocytes, and vCSCs endothelial and smooth muscle cells. CONCLUSIONS: The growth properties of mCSCs and vCSCs isolated from endomyocardial biopsies from patients with advanced heart failure were comparable to those obtained previously from larger myocardial samples of patients undergoing elective cardiac surgery.


Subject(s)
Adult Stem Cells/pathology , Adult Stem Cells/physiology , Cardiomyopathies/pathology , Myocardium/pathology , Adult , Aged , Biopsy , Cardiomyopathies/physiopathology , Cell Differentiation/physiology , Cell Proliferation , Cells, Cultured , Female , Heart Failure/pathology , Heart Failure/physiopathology , Humans , Male , Middle Aged , Telomere/pathology
SELECTION OF CITATIONS
SEARCH DETAIL