Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Phys Rev Lett ; 133(7): 071902, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39213572

ABSTRACT

The COMPASS Collaboration performed measurements of the Drell-Yan process in 2015 and 2018 using a 190 GeV/c π^{-} beam impinging on a transversely polarized ammonia target. Combining the data of both years, we present final results on the amplitudes of five azimuthal modulations, which correspond to transverse-spin-dependent azimuthal asymmetries (TSAs) in the dimuon production cross section. Three of them probe the nucleon leading-twist Sivers, transversity, and pretzelosity transverse-momentum dependent (TMD) parton distribution functions (PDFs). The other two are induced by subleading effects. These TSAs provide unique new inputs for the study of the nucleon TMD PDFs and their universality properties. In particular, the Sivers TSA observed in this measurement is consistent with the fundamental QCD prediction of a sign change of naive time-reversal-odd TMD PDFs when comparing the Drell-Yan process with deep inelastic scattering. Also, within the context of model predictions, the observed transversity TSA is consistent with the expectation of a sign change for the Boer-Mulders function.

2.
Phys Rev Lett ; 127(8): 082501, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34477443

ABSTRACT

The COMPASS Collaboration experiment recently discovered a new isovector resonancelike signal with axial-vector quantum numbers, the a_{1}(1420), decaying to f_{0}(980)π. With a mass too close to and a width smaller than the axial-vector ground state a_{1}(1260), it was immediately interpreted as a new light exotic meson, similar to the X, Y, Z states in the hidden-charm sector. We show that a resonancelike signal fully matching the experimental data is produced by the decay of the a_{1}(1260) resonance into K^{*}(→Kπ)K[over ¯] and subsequent rescattering through a triangle singularity into the coupled f_{0}(980)π channel. The amplitude for this process is calculated using a new approach based on dispersion relations. The triangle-singularity model is fitted to the partial-wave data of the COMPASS experiment. Despite having fewer parameters, this fit shows a slightly better quality than the one using a resonance hypothesis and thus eliminates the need for an additional resonance in order to describe the data. We thereby demonstrate for the first time in the light-meson sector that a resonancelike structure in the experimental data can be described by rescattering through a triangle singularity, providing evidence for a genuine three-body effect.

3.
Phys Rev Lett ; 120(2): 022002, 2018 Jan 12.
Article in English | MEDLINE | ID: mdl-29376676

ABSTRACT

Taking advantage of the high acceptance and axial symmetry of the WASA-at-COSY detector, and the high polarization degree of the proton beam of COSY, the reaction p[over →]p→ppη has been measured close to threshold to explore the analyzing power A_{y}. The angular distribution of A_{y} is determined with the precision improved by more than 1 order of magnitude with respect to previous results, allowing a first accurate comparison with theoretical predictions. The determined analyzing power is consistent with zero for an excess energy of Q=15 MeV, signaling s-wave production with no evidence for higher partial waves. At Q=72 MeV the data reveal strong interference of Ps and Pp partial waves and cancellation of (Pp)^{2} and Ss^{*}Sd contributions. These results rule out the presently available theoretical predictions for the production mechanism of the η meson.

4.
Phys Rev Lett ; 121(5): 052001, 2018 Aug 03.
Article in English | MEDLINE | ID: mdl-30118290

ABSTRACT

Exclusive measurements of the quasifree pp→ppπ^{+}π^{-} reaction have been carried out at WASA@COSY by means of pd collisions at T_{p}=1.2 GeV. Total and differential cross sections have been extracted covering the energy region T_{p}=1.08-1.36 GeV, which is the region of N^{*}(1440) and Δ(1232)Δ(1232) resonance excitations. Calculations describing these excitations by t-channel meson exchange are at variance with the measured differential cross sections and underpredict substantially the experimental total cross section. An isotensor ΔN dibaryon resonance with I(J^{P})=2(1^{+}) produced associatedly with a pion is able to overcome these deficiencies.

5.
Phys Rev Lett ; 119(1): 014801, 2017 Jul 07.
Article in English | MEDLINE | ID: mdl-28731757

ABSTRACT

This Letter reports the successful use of feedback from a spin polarization measurement to the revolution frequency of a 0.97 GeV/c bunched and polarized deuteron beam in the Cooler Synchrotron (COSY) storage ring in order to control both the precession rate (≈121 kHz) and the phase of the horizontal polarization component. Real time synchronization with a radio frequency (rf) solenoid made possible the rotation of the polarization out of the horizontal plane, yielding a demonstration of the feedback method to manipulate the polarization. In particular, the rotation rate shows a sinusoidal function of the horizontal polarization phase (relative to the rf solenoid), which was controlled to within a 1 standard deviation range of σ=0.21 rad. The minimum possible adjustment was 3.7 mHz out of a revolution frequency of 753 kHz, which changes the precession rate by 26 mrad/s. Such a capability meets a requirement for the use of storage rings to look for an intrinsic electric dipole moment of charged particles.

6.
Phys Rev Lett ; 119(11): 112002, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28949229

ABSTRACT

The first measurement of transverse-spin-dependent azimuthal asymmetries in the pion-induced Drell-Yan (DY) process is reported. We use the CERN SPS 190 GeV/c π^{-} beam and a transversely polarized ammonia target. Three azimuthal asymmetries giving access to different transverse-momentum-dependent (TMD) parton distribution functions (PDFs) are extracted using dimuon events with invariant mass between 4.3 GeV/c^{2} and 8.5 GeV/c^{2}. Within the experimental uncertainties, the observed sign of the Sivers asymmetry is found to be consistent with the fundamental prediction of quantum chromodynamics (QCD) that the Sivers TMD PDFs extracted from DY have a sign opposite to the one extracted from semi-inclusive deep-inelastic scattering (SIDIS) data. We present two other asymmetries originating from the pion Boer-Mulders TMD PDFs convoluted with either the nucleon transversity or pretzelosity TMD PDFs. A recent COMPASS SIDIS measurement was obtained at a hard scale comparable to that of these DY results. This opens the way for possible tests of fundamental QCD universality predictions.

7.
Phys Rev Lett ; 117(5): 054801, 2016 Jul 29.
Article in English | MEDLINE | ID: mdl-27517774

ABSTRACT

We observe a deuteron beam polarization lifetime near 1000 s in the horizontal plane of a magnetic storage ring (COSY). This long spin coherence time is maintained through a combination of beam bunching, electron cooling, sextupole field corrections, and the suppression of collective effects through beam current limits. This record lifetime is required for a storage ring search for an intrinsic electric dipole moment on the deuteron at a statistical sensitivity level approaching 10^{-29} e cm.

8.
Phys Rev Lett ; 115(9): 094801, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26371657

ABSTRACT

A new method to determine the spin tune is described and tested. In an ideal planar magnetic ring, the spin tune-defined as the number of spin precessions per turn-is given by ν(s)=γG (γ is the Lorentz factor, G the gyromagnetic anomaly). At 970 MeV/c, the deuteron spins coherently precess at a frequency of ≈120 kHz in the Cooler Synchrotron COSY. The spin tune is deduced from the up-down asymmetry of deuteron-carbon scattering. In a time interval of 2.6 s, the spin tune was determined with a precision of the order 10^{-8}, and to 1×10^{-10} for a continuous 100 s accelerator cycle. This renders the presented method a new precision tool for accelerator physics; controlling the spin motion of particles to high precision is mandatory, in particular, for the measurement of electric dipole moments of charged particles in a storage ring.

9.
Phys Rev Lett ; 106(24): 242302, 2011 Jun 17.
Article in English | MEDLINE | ID: mdl-21770567

ABSTRACT

We report on an exclusive and kinematically complete high-statistics measurement of the basic double-pionic fusion reaction pn→dπ(0)π(0) over the full energy region of the ABC effect, a pronounced low-mass enhancement in the ππ-invariant mass spectrum. The measurements, which cover also the transition region to the conventional t-channel ΔΔ process, were performed with the upgraded WASA detector setup at COSY. The data reveal the Abashian-Booth-Crowe effect to be uniquely correlated with a Lorentzian energy dependence in the integral cross section. The observables are consistent with a narrow resonance with m=2.37 GeV, Γ≈70 MeV and I(J(P))=0(3(+)) in both pn and ΔΔ systems. Necessary further tests of the resonance interpretation are discussed.

10.
Phys Rev Lett ; 103(15): 152002, 2009 Oct 09.
Article in English | MEDLINE | ID: mdl-19905623

ABSTRACT

Azimuthal single-spin asymmetries of leptoproduced pions and charged kaons were measured on a transversely polarized hydrogen target. Evidence for a naive-T-odd, transverse-momentum-dependent parton distribution function is deduced from nonvanishing Sivers effects for pi(+), pi(0), and K(+/-), as well as in the difference of the pi(+) and pi(-) cross sections.

11.
Thromb Haemost ; 48(1): 33-7, 1982 Aug 24.
Article in English | MEDLINE | ID: mdl-7135342

ABSTRACT

Highly purified D-dimer was obtained from plasmin digest of human cross-linked fibrin. After reduction of its disulfide bonds, the gamma-gamma chain remnant, containing cross-linking site, was then isolated by ion-exchange chromatography on CM-cellulose. Antisera obtained by immunizing rabbits with D-dimer and its gamma-gamma chain remnant contained a small population of antibodies which specifically reacted with D-dimer. Thus, a specific radioimmunoassay system allowing detection and quantitation of D-dimer in the presence of fibrinogen and monomeric fragment D was made possible.


Subject(s)
Fibrin Fibrinogen Degradation Products/analysis , Animals , Antibody Specificity , Binding, Competitive , Cross-Linking Reagents/pharmacology , Electrophoresis, Polyacrylamide Gel , Fibrin Fibrinogen Degradation Products/immunology , Fibrin Fibrinogen Degradation Products/isolation & purification , Humans , Immune Sera/pharmacology , Rabbits , Radioimmunoassay
20.
Phys Rev Lett ; 96(16): 162301, 2006 Apr 28.
Article in English | MEDLINE | ID: mdl-16712217

ABSTRACT

The first measurements of double-hadron production in deep-inelastic scattering within the nuclear medium were made with the HERMES spectrometer at DESY HERA using a 27.6 GeV positron beam. By comparing data for deuterium, nitrogen, krypton, and xenon nuclei, the influence of the nuclear medium on the ratio of double-hadron to single-hadron yields was investigated. Nuclear effects on the additional hadron are clearly observed, but with little or no difference among nitrogen, krypton, or xenon, and with smaller magnitude than effects seen on previously measured single-hadron multiplicities. The data are compared with models based on partonic energy loss or prehadronic scattering and with a model based on a purely absorptive treatment of the final-state interactions. Thus, the double-hadron ratio provides an additional tool for studying modifications of hadronization in nuclear matter.

SELECTION OF CITATIONS
SEARCH DETAIL