Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Chem Soc Rev ; 52(1): 277-317, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36520183

ABSTRACT

Polyurethanes (PUs) are a versatile and major polymer family, mainly produced via polyaddition between polyols and polyisocyanates. A large variety of fossil-based building blocks is commonly used to develop a wide range of macromolecular architectures with specific properties. Due to environmental concerns, legislation, rarefaction of some petrol fractions and price fluctuation, sustainable feedstocks are attracting significant attention, e.g., plastic waste and biobased resources from biomass. Consequently, various sustainable building blocks are available to develop new renewable macromolecular architectures such as aromatics, linear aliphatics and cycloaliphatics. Meanwhile, the relationship between the chemical structures of these building blocks and properties of the final PUs can be determined. For instance, aromatic building blocks are remarkable to endow materials with rigidity, hydrophobicity, fire resistance, chemical and thermal stability, whereas acyclic aliphatics endow them with oxidation and UV light resistance, flexibility and transparency. Cycloaliphatics are very interesting as they combine most of the advantages of linear aliphatic and aromatic compounds. This original and unique review presents a comprehensive overview of the synthesis of sustainable cycloaliphatic PUs using various renewable products such as biobased terpenes, carbohydrates, fatty acids and cholesterol and/or plastic waste. Herein, we summarize the chemical modification of the main sustainable cycloaliphatic feedstocks, synthesis of PUs using these building blocks and their corresponding properties and subsequently present their major applications in hot-topic fields, including building, transportation, packaging and biomedicine.


Subject(s)
Plastics , Polyurethanes , Humans , Polyurethanes/chemistry , Suppuration
2.
Angew Chem Int Ed Engl ; : e202403806, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012927

ABSTRACT

Lignin is a widely available second-generation biopolymer and the main potential source of renewable aromatic building blocks. Lignin-based polyamines offer great potential in applications based on chemical and materials sciences. However, common aminations techniques for lignin usually involve toxic chemicals and generate hindered and low reactivity amines. In this study, we developed two new, simple, and benign 2-step methodologies for the elaboration of lignin-based polyamines from different technical lignins (kraft, soda and organosolv) with a selectivity towards reactive primary amines. These methods involve grafting amide groups onto lignin followed by a hydrolysis step. Non-toxic heterocyclic compounds N-acetyl-2-oxazolidinone and 2-methyl-2-oxazoline were used as amidation agents. Hydrolysis was performed in acetone-water mixtures. Reactions were studied on model compounds and optimized on lignins. Aminated lignins were fully characterized and primary amines were quantified using quantitative 19F NMR. Our methods generated aminated lignins with low apparent molar masses and high solubility in water and solvents. Nitrogen contents of the products ranged between 2.0 and 3.5 mmol/g with reactive primary amines counts up to 1.7 mmol/g. These soluble and reactive lignin-based polyamines offer great potential as a replacement for fossil-based polyamines in e.g., the synthesis of aromatic polymer materials or as potential chelating, antibacterial agents.

3.
Metab Eng ; 66: 167-178, 2021 07.
Article in English | MEDLINE | ID: mdl-33865980

ABSTRACT

Over 359 million tons of plastics were produced worldwide in 2018, with significant growth expected in the near future, resulting in the global challenge of end-of-life management. The recent identification of enzymes that degrade plastics previously considered non-biodegradable opens up opportunities to steer the plastic recycling industry into the realm of biotechnology. Here, the sequential conversion of post-consumer polyethylene terephthalate (PET) into two types of bioplastics is presented: a medium chain-length polyhydroxyalkanoate (PHA) and a novel bio-based poly(amide urethane) (bio-PU). PET films are hydrolyzed by a thermostable polyester hydrolase yielding highly pure terephthalate and ethylene glycol. The obtained hydrolysate is used directly as a feedstock for a terephthalate-degrading Pseudomonas umsongensis GO16, also evolved to efficiently metabolize ethylene glycol, to produce PHA. The strain is further modified to secrete hydroxyalkanoyloxy-alkanoates (HAAs), which are used as monomers for the chemo-catalytic synthesis of bio-PU. In short, a novel value-chain for PET upcycling is shown that circumvents the costly purification of PET monomers, adding technological flexibility to the global challenge of end-of-life management of plastics.


Subject(s)
Polyethylene Terephthalates , Pseudomonas , Hydrolases , Plastics
4.
Molecules ; 25(5)2020 Feb 27.
Article in English | MEDLINE | ID: mdl-32121002

ABSTRACT

The bioproduction of high-value chemicals such as itaconic and fumaric acids (IA and FA, respectively) from renewable resources via solid-state fermentation (SSF) represents an alternative to the current bioprocesses of submerged fermentation using refined sugars. Both acids are excellent platform chemicals with a wide range of applications in different market, such as plastics, coating, or cosmetics. The use of lignocellulosic biomass instead of food resources (starch or grains) in the frame of a sustainable development for IA and FA bioproduction is of prime importance. Filamentous fungi, especially belonging to the Aspergillus genus, have shown a great capacity to produce these organic dicarboxylic acids. This study attempts to develop and optimize the SSF conditions with lignocellulosic biomasses using A. terreus and A. oryzae to produce IA and FA. First, a kinetic study of SSF was performed with non-food resources (wheat bran and corn cobs) and a panel of pH and moisture conditions was studied during fermentation. Next, a new process using an enzymatic cocktail simultaneously with SSF was investigated in order to facilitate the use of the biomass as microbial substrate. Finally, a large-scale fermentation process was developed for SSF using corn cobs with A. oryzae; this specific condition showed the best yield in acid production. The yields achieved were 0.05 mg of IA and 0.16 mg of FA per gram of biomass after 48 h. These values currently represent the highest reported productions for SSF from raw lignocellulosic biomass.


Subject(s)
Aspergillus oryzae/enzymology , Biotechnology/methods , Fermentation , Fumarates/isolation & purification , Lignin/chemistry , Succinates/isolation & purification , Biomass , Bioreactors , Fumarates/chemistry , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Succinates/chemistry
5.
Microb Cell Fact ; 18(1): 99, 2019 May 31.
Article in English | MEDLINE | ID: mdl-31151440

ABSTRACT

BACKGROUND: The oleaginous yeast Yarrowia lipolytica is an organism of choice for the tailored production of various compounds such as biofuels or biopolymers. When properly engineered, it is capable of producing medium-chain-length polyhydroxyalkanoate (mcl-PHA), a biobased and biodegradable polymer that can be used as bioplastics or biopolymers for environmental and biomedical applications. RESULTS: This study describes the bioproduction and the main properties of two different mcl-PHA polymers. We generated by metabolic engineering, strains of Y. lipolytica capable of accumulating more than 25% (g/g) of mcl-PHA polymers. Depending of the strain genetic background and the culture conditions, we produced (i) a mcl-PHA homopolymer of 3-hydroxydodecanoic acids, with a mass-average molar mass (Mw) of 316,000 g/mol, showing soft thermoplastic properties with potential applications in packaging and (ii) a mcl-PHA copolymer made of 3-hydroxyoctanoic (3HO), decanoic (3HD), dodecanoic (3HDD) and tetradecanoic (3TD) acids with a Mw of 128,000 g/mol, behaving like a thermoplastic elastomer with potential applications in biomedical material. CONCLUSION: The ability to engineer Y. lipolytica to produce tailored PHAs together with the range of possible applications regarding their biophysical and mechanical properties opens new perspectives in the field of PHA bioproduction.


Subject(s)
Metabolic Engineering , Polyhydroxyalkanoates/biosynthesis , Yarrowia/metabolism , Microorganisms, Genetically-Modified , Polyhydroxyalkanoates/chemistry , Yarrowia/genetics
6.
Molecules ; 24(23)2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31783536

ABSTRACT

Nowadays, polyols are basic chemicals for the synthesis of a large range of polymers, such as polyurethane foams (PUF), which are produced with several other compounds, such as polyisocyanates. During the last decades, the oleo-chemistry has developed several routes from glycerides to polyols for the polyurethanes (PU) industry to replace mainly conventional fossil-based polyols. A large range of biobased polyols can be now obtained by epoxidation of the double bonds and ring-opening (RO) of the subsequent epoxides with different chemical moieties. In preliminary studies, the RO kinetics of an epoxidized model molecule (methyl oleate) with ethanol and acetic acid were investigated. Subsequently, polyols that were derived from unsaturated triglycerides were explored in the frame of e.g., PUF formulations. Different associations were studied with different mono-alcohols derived from epoxidized and ring-opened methyl oleate while using several ring-openers to model such systems and for comparison purposes. Kinetic studies were realized with the pseudo-first-order principle, meaning that hydroxyls are in large excess when compared to the isocyanate groups. The rate of isocyanate consumption was found to be dependent on the moiety located in ß-position of the reactive hydroxyl, following this specific order: tertiary amine >> ether > ester. The tertiary amine in ß-position of the hydroxyl tremendously increases the reactivity toward isocyanate. Consequently, a biobased reactive polyurethane catalyst was synthesized from unsaturated glycerides. These approaches offer new insights regarding the replacement of current catalysts often harmful, pungent, and volatile used in PU and PUF industry, in order to revisit this chemistry.


Subject(s)
Epoxy Compounds/chemistry , Plant Oils/chemistry , Polyurethanes/chemical synthesis , Catalysis , Esters/chemistry , Ethanol/chemistry , Fatty Acids/chemistry , Isocyanates/chemical synthesis , Isocyanates/chemistry , Kinetics , Magnetic Resonance Spectroscopy/methods , Models, Chemical , Oleic Acids/chemistry , Polymers/chemical synthesis , Polymers/chemistry , Polyurethanes/chemistry , Thermodynamics , Urethane/chemical synthesis , Urethane/chemistry
7.
Int J Mol Sci ; 19(12)2018 Nov 29.
Article in English | MEDLINE | ID: mdl-30501040

ABSTRACT

Polyester and/or polythioester grafted chitosan copolymers were synthesized. For that, poly(ε-caprolactone) (PCL), poly(ε-thiocaprolactone) (PTCL), and their copolymers were first synthesized by ring opening polymerization. Copolymers with caprolactone:thiocaprolactone (CL:TCL) molar ratios of 2:1, 1:1, 1:2 were synthesized. All of the synthesized macromolecular architectures were characterized using different spectral (Fourier transform infrared (FTIR), proton nuclear magnetic resonance (¹H-NMR), X-Ray diffraction (XRD)) and thermal (Differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA)) methods. Grafting was then performed according two distinct routes: (i) using a blend of both homopolymers (PCL and PTCL) or (ii) using pre-synthesized copolymers with controlled CL:TCL ratios. Hexamethylene diisocyanate was used as a grafting/coupling agent through urethane bonds with high yield. Grafting preferentially occurred at sulfur sites. The results indicated that PTCL is more reactive and favorable than PCL for grafting onto chitosan. With the homopolymers blend grafting route, the corresponding materials mostly had a higher PTCL portion than expected. To obtain polyester grafted chitosan with a determined CL:TCL ratio, the copolymer grafting route would yield better results.


Subject(s)
Biocompatible Materials/chemistry , Chitosan/chemistry , Polyesters/chemistry , Molecular Structure , Polymers/chemistry
8.
Molecules ; 23(2)2018 Jan 30.
Article in English | MEDLINE | ID: mdl-29385763

ABSTRACT

ε-caprolactone (CL) has been enzymatically polymerized using α-amino acids based on sulfur (methionine and cysteine) as (co-)initiators and immobilized lipase B of Candida antarctica (CALB) as biocatalyst. In-depth characterizations allowed determining the corresponding involved mechanisms and the polymers thermal properties. Two synthetic strategies were tested, a first one with direct polymerization of CL with the native amino acids and a second one involving the use of an amino acid with protected functional groups. The first route showed that mainly polycaprolactone (PCL) homopolymer could be obtained and highlighted the lack of reactivity of the unmodified amino acids due to poor solubility and affinity with the lipase active site. The second strategy based on protected cysteine showed higher monomer conversion, with the amino acids acting as (co-)initiators, but their insertion along the PCL chains remained limited to chain endcapping. These results thus showed the possibility to synthesize enzymatically polycaprolactone-based chains bearing amino acids units. Such cysteine endcapped PCL materials could then find application in the biomedical field. Indeed, subsequent functionalization of these polyesters with drugs or bioactive molecules can be obtained, by derivatization of the amino acids, after removal of the protecting group.


Subject(s)
Candida/enzymology , Enzymes, Immobilized/chemistry , Fungal Proteins/chemistry , Lipase/chemistry , Polyesters , Polyesters/chemical synthesis , Polyesters/chemistry
9.
Biomacromolecules ; 17(12): 4054-4063, 2016 12 12.
Article in English | MEDLINE | ID: mdl-27936726

ABSTRACT

The enzyme-catalyzed synthesis of fully biobased poly(3-hydroxybutyrate-co-butylene succinate) (poly(HB-co-BS)) copolyesters is reported for the first time. Different Candida antarctica lipase B (CALB)-catalyzed copolyesters were produced in solution, via a one-step or a two-step process from 1,4-butanediol, diethyl succinate, and synthesized telechelic hydroxylated poly(3-hydroxybutyrate) oligomers (PHB-diol). The influence of the ester/hydroxyl functionality ratio, catalyst amount, PHB-diol oligomer chain length, hydroxybutyrate (HB) and butylene succinate (BS) contents, and the nature of the solvent were investigated. The two-step process allowed the synthesis of copolyesters of high molar masses (Mn up to 18 000 g/mol), compared to the one-step process (Mn ∼ 8000 g/mol), without thermal degradation. The highest molar masses were obtained with diphenyl ether as solvent, compared with dibenzyl ether or anisole. During the two-step process, the transesterification rate between the HB and BS segments (i) increased with increasing amount of catalyst and decreasing molar mass of the PHB-diol oligomer, (ii) decreased when anisole was used as the solvent, and (iii) was not influenced by the HB/BS ratio. Tendencies toward block or random macromolecular architectures were observed as a function of the reaction time, the PHB-diol oligomer chain length, and the chosen solvent. Immobilized CALB-catalyzed copolyesters were thermally stable up to 200 °C. The crystalline structure of the poly(HB-co-BS) copolyesters depended on the HB/BS ratio and the average sequence length of the segments. The crystalline content, Tm and Tc decreased with increasing HB content and the randomness of the copolymer structure.


Subject(s)
Biocompatible Materials/chemical synthesis , Fungal Proteins/metabolism , Hydroxybutyrates/chemistry , Lipase/metabolism , Polyesters/chemical synthesis , Succinates/chemistry , Catalysis , Esterification , Polyesters/chemistry , Temperature
10.
Macromol Rapid Commun ; 36(3): 292-7, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25424726

ABSTRACT

Herein, it is demonstrated that star pseudopolyrotaxanes (star-pPRs) obtained from the inclusion complexation of α-cyclodextrin (CD) and four-branched star poly(ε-caprolactone) (star-PCL) organize into nanoplatelets in dimethyl sulfoxide at 35 °C. This peculiar property, not observed for linear pseudopolyrotaxanes, allows the processing of star-pPRs while preserving their supramolecular assembly. Thus, original PCL:star-pPR core:shell nanofibers are elaborated by coaxial electrospinning. The star-pPR shell ensures the presence of available CD hydroxyl functions on the fiber surface allowing its postfunctionalization. As proof of concept, fluorescein isothiocyanate is grafted. Moreover, the morphology of the fibers is maintained due to the star-pPR shell that acts as a shield, preventing the fiber dissolution during chemical modification. The proposed strategy is simple and avoids the synthesis of polyrotaxanes, i.e., pPR end-capping to prevent the CD dethreading. As PCL is widely used for biomedical applications, this strategy paves the way for simple functionalization with any bioactive molecules.


Subject(s)
Cyclodextrins/chemistry , Nanofibers/chemistry , Poloxamer/chemistry , Polyesters/chemistry , Rotaxanes/chemistry
11.
J Mater Sci Mater Med ; 25(4): 1137-48, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24378848

ABSTRACT

Mineralized poly(ε-caprolactone)/gelatin core-shell nanofibers were prepared via co-axial electrospinning and subsequent incubation in biomimetic simulated body fluid containing ten times the calcium and phosphate ion concentrations found in human blood plasma. The deposition of calcium phosphate on the nanofiber surfaces was investigated through scanning electronic microscopy and X-ray diffraction. Energy dispersive spectroscopy results indicated that calcium-deficient hydroxyapatite had grown on the fibers. Fourier transform infrared spectroscopy analysis suggested the presence of hydroxyl-carbonate-apatite. The results of a viability assay (MTT) and alkaline phosphatase activity analysis suggested that these mineralized matrices promote osteogenic differentiation of human adipose-derived stem cells (hASCs) when cultured in an osteogenic medium and have the potential to be used as a scaffold in bone tissue engineering. hASCs cultured in the presence of nanofibers in endothelial differentiation medium showed lower rates of proliferation than cells cultured without the nanofibers. However, endothelial cell markers were detected in cells cultured in the presence of nanofibers in endothelial differentiation medium.


Subject(s)
Adipose Tissue/cytology , Adult Stem Cells/cytology , Biocompatible Materials/chemistry , Nanofibers/chemistry , Adult Stem Cells/enzymology , Alkaline Phosphatase/metabolism , Cell Differentiation , Cell Proliferation , Cell Survival , Endothelial Cells/cytology , Gelatin/chemistry , Humans , Materials Testing , Microscopy, Electron, Scanning , Minerals/chemistry , Nanofibers/ultrastructure , Osteogenesis , Polyesters/chemistry
12.
Polymers (Basel) ; 16(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38337302

ABSTRACT

Antioxidants are essential to the polymer industry. The addition of antioxidants delays oxidation and material degradation during their processing and usage. Sustainable phenolic acids such as 4-hydroxybenzoic acid or 3,4-dihydroxybenzoic acid were selected. They were chemically modified by esterification to obtain various durable molecules, which were tested and then compared to resveratrol, a biobased antioxidant, and Irganox 1076, a well-known and very efficient fossil-based antioxidant. Different sensitive matrices were used, such as a thermoplastic polyolefin (a blend of PP and PE) and a purposely synthesized thermoplastic polyurethane. Several formulations were then produced, with the different antioxidants in varying amounts. The potential of these different systems was analyzed using various techniques and processes. In addition to antioxidant efficiency, other parameters were also evaluated, such as the evolution of the sample color. Finally, an accelerated aging protocol was set up to evaluate variations in polymer properties and estimate the evolution of the potential of different antioxidants tested over time and with aging. In conclusion, these environmentally friendly antioxidants make it possible to obtain high-performance materials with an efficiency comparable to that of the conventional ones, with variations according to the type of matrix considered.

13.
ChemSusChem ; 16(23): e202300792, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37486785

ABSTRACT

During the two last decades, covalent adaptable networks (CANs) have proven to be an important new class of polymer materials combining the main advantages of thermoplastics and thermosets. For instance, materials can undergo reprocessing cycles by incorporating dynamic covalent bonds within a cross-linked network. Due to their versatility, renewable resources can be easily integrated into these innovative systems to develop sustainable materials, which can be related to the context of the recent development of a circular bioeconomy. Lignins, the main renewable sources of aromatic structures, are major candidates in the design of novel and biobased stimuli-responsive materials such as vitrimers due to their high functionality and specific chemical architectures. In the aim of developing recyclable lignin-based vinylogous urethane (VU) networks, an innovative strategy was elaborated in which lignin was first modified into liquid polyols and then into polyacetoacetates. Resulting macromonomers were integrated into aromatic VU networks and fully characterized through thermal, mechanical, and rheological experiments. Viscoelastic behaviors of the different aromatic vitrimers exhibited fast stress-relaxations (e. g., 39 s at 130 °C) allowing easy and fast mechanical reprocessing. A thermomechanical recycling study was successfully performed. Then, the developed strategy enabled the fabrication of healable biobased aromatic vitrimers with tunable structures and properties.

14.
Bioresour Technol ; 387: 129668, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37572888

ABSTRACT

Polyhydroxyalkanoates (PHAs) are biological polyesters, viewed as a replacement for petrochemical plastic. However, they suffer from suboptimal physical and mechanical properties. Here, it was shown that a metabolically versatile Pseudomonas umsongensis GO16 can synthesise a blend of short chain length (scl) and medium chain length (mcl)-PHA. A defined mix of butyric (BA) and octanoic acid (OA) in different ratios was used. The PHA monomer composition varied depending on the feeding strategy. When OA and BA were fed at 80:20 ratio it showed 14, 8, 77 and 1 mol% of (R)-3-hydroxybutyrate, (R)-3-hydroxyhexanoate, (R)-3-hydroxyoctanoate and (R)-3-hydroxydecanoate respectively. The polymer characterisation clearly shows that polyhydroxybutyrate (PHB) and mcl-PHA are produced individually. The two polymers are blended on the PHA granule level, as demonstrated by fluorescence microscopy and yeast two-hybrid assay. The resulting blend has a specific viscoelasticity compared to PHB and PHO. Mcl-PHA acts as a plasticiser and reduces PHB brittleness.


Subject(s)
Polyhydroxyalkanoates , Pseudomonas , Polyesters
15.
Carbohydr Polym ; 277: 118805, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34893225

ABSTRACT

The barrier performances, in terms of water vapor sorption properties, gas and water barrier performances were analyzed on different starch-based nano-biocomposites. These multiphase systems were elaborated by melt blending starch and halloysite nanotubes at different contents with different plasticizers (glycerol, sorbitol and a mix of both polyols). The influence of the composition was investigated onto the structure, morphology, water sorption and barrier performances. As recently reported, halloysite nanoclay is a promising clay to enhance the properties of plasticized starch matrix. The barrier performances of nanofilled starch-based films were examined through gas and water permeabilities, diffusivity and water affinity. Glycerol-plasticized starch films give fine and more homogeneous nanofiller dispersion with good interfacial interactions, compared to sorbitol ones (alone or mixed), due to stronger and more stable hydrogen bonds. Tortuosity effects linked to the halloysite nanotubes were evidenced by gas transfer analysis, and exacerbated by the good interactions at interfaces and the resulting good filler dispersion. The influence of morphology and interfacial interactions towards water affinity was highlighted by moisture barrier properties. This was a key factor on the reduction of water diffusion and uptake with nanoclay content. A preferential water transfer was observed as a function of a plasticizer type in relation with the phenomenon of water plasticization in the nanocomposite systems.

16.
Materials (Basel) ; 15(2)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35057397

ABSTRACT

The removal of water from archaeological wooden objects for display or storage is of great importance to their long-term conservation. Any mechanical instability caused during drying can induce warping or cracking of the wood cells, leading to irreparable damage of the object. Drying of an object is commonly carried out in one of three ways: (i) air-drying with controlled temperature and relative humidity, (ii) drying-out of a non-aqueous solvent or (iii) freeze-drying. Recently, there has been great interest in the replacement of the standard, but limited, polyethylene glycol with biopolymers for wood conservation; however, their behaviour and action within the wood is not completely understood. Three polysaccharides-low-molar-mass (Mw) chitosan (Mw ca. 60,000 g/mol), medium-molar-mass alginate (Mw ca. 100,000 g/mol) and cellulose nanocrystals (CNCs)-are investigated in relation to their drying behaviour. The method of drying reveals a significant difference in the morphology of these biopolymers both ex situ and within the wood cells. Here, the effect these differences in structuration have on the coating of the wood cells and the biological and thermal stability of the wood are examined, as well as the role of the environment in the formation of specific structures. The role these factors play in the selection of appropriate consolidants and drying methods for the conservation of waterlogged archaeological wooden objects is also investigated. The results show that both alginate and chitosan are promising wood consolidants from a structural perspective and both improve the thermal stability of the lignin component of archaeological wood. However, further modification would be necessary to improve the biocidal activity of alginate before it could be introduced into wooden objects. CNCs did not prove to be sufficiently suitable for wood conservation as a result of the analyses performed here.

17.
Appl Microbiol Biotechnol ; 89(5): 1583-98, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21267558

ABSTRACT

This work describes the generation of novel PHAs (named PHACOS) with a new monomer composition containing thioester groups in the side chain, which confers new properties and made them suitable for chemical modifications after their biosynthesis. We have analyzed the PHACOS production abilities of the wild-type strain Pseudomonas putida KT2442 vs. its derived strain P. putida KT42FadB, mutated in the fadB gene from the central metabolic ß-oxidation pathway involved in the synthesis of medium-chain-length PHA (mcl-PHA). Different fermentation strategies based on one- or two-stage cultures have been tested resulting in PHACOS with different monomer composition. Using decanoic acid as inducer of the growth and polymer synthesis and 6-acetylthiohexanoic acid as PHA precursor in a two-stage strategy, the maximum yield was obtained by culturing the strain KT42FadB. Nuclear magnetic resonance and gas chromatography coupled to mass spectrometry showed that polymers obtained from the wild-type and KT42FadB strains, included 6-acetylthio-3-hydroxyhexanoic acid (OH-6ATH) and the shorter derivative 4-acetylthio-3-hydroxybutanoic acid (OH-4ATB) in their composition, although in different ratios. While the polymer obtained from KT42FadB strain contained mainly OH-6ATH monomer units, mcl-PHA produced by the wild-type strain contained OH-6ATH and OH-4ATB. Furthermore, polyesters showed differences in the OH-alkyl derivates moiety. The strain KT42FadB overproduced PHACOS when compared to the production rate of the control strain in one- and two-stage cultures. Thermal properties obtained by differential scanning calorimetry indicated that both polymers have different glass transition temperatures related to their composition.


Subject(s)
Biosynthetic Pathways/genetics , Multienzyme Complexes/genetics , Polyhydroxyalkanoates/biosynthesis , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Decanoic Acids/metabolism , Gas Chromatography-Mass Spectrometry , Magnetic Resonance Spectroscopy , Mitochondrial Trifunctional Protein , Polyhydroxyalkanoates/chemistry
18.
Bioact Mater ; 6(4): 1083-1106, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33102948

ABSTRACT

Polyurethanes (PUs) are a major family of polymers displaying a wide spectrum of physico-chemical, mechanical and structural properties for a large range of fields. They have shown suitable for biomedical applications and are used in this domain since decades. The current variety of biomass available has extended the diversity of starting materials for the elaboration of new biobased macromolecular architectures, allowing the development of biobased PUs with advanced properties such as controlled biotic and abiotic degradation. In this frame, new tunable biomedical devices have been successfully designed. PU structures with precise tissue biomimicking can be obtained and are adequate for adhesion, proliferation and differentiation of many cell's types. Moreover, new smart shape-memory PUs with adjustable shape-recovery properties have demonstrated promising results for biomedical applications such as wound healing. The fossil-based starting materials substitution for biomedical implants is slowly improving, nonetheless better renewable contents need to be achieved for most PUs to obtain biobased certifications. After a presentation of some PU generalities and an understanding of a biomaterial structure-biocompatibility relationship, recent developments of biobased PUs for non-implantable devices as well as short- and long-term implants are described in detail in this review and compared to more conventional PU structures.

19.
Polymers (Basel) ; 13(23)2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34883759

ABSTRACT

Organic-inorganic xerogel networks were synthesized from bacterial poly (3-hydroxybutyrate) (PHB) for potential biomedical applications. Since silane-based networks usually demonstrate increased biocompatibility and mechanical properties, siloxane groups have been added onto polyurethane (PU) architectures. In this work, a diol oligomer (oligoPHB-diol) was first prepared from bacterial poly(3-hydroxybutyrate) (PHB) with an environmentally friendly method. Then, hexamethylene diisocyanate or biobased dimeryl diisocyanate was used as diisocyanate to react with the short oligoPHB-diol for the synthesis of different NCO-terminated PU systems in a bulk process and without catalyst. Various PU systems containing increasing NCO/OH molar ratios were prepared. Siloxane precursors were then obtained after reaction of the NCO-terminated PUs with (3-aminopropyl)triethoxysilane, resulting in silane-terminated polymers. These structures were confirmed by different analytical techniques. Finally, four series of xerogels were prepared via a sol-gel process from the siloxane precursors, and their properties were evaluated depending on varying parameters such as the inorganic network crosslinking density. The final xerogels exhibited adequate properties in connection with biomedical applications such as a high in vitro degradation up to 15 wt% after 12 weeks.

20.
Waste Manag ; 132: 23-30, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34304019

ABSTRACT

Development of green, efficient and profitable recycling processes for plastic material will contribute to reduce the expanding plastic pollution and microplastics accumulation in the environment. Polyurethanes (PU) are versatile polymers with a large range of chemical compositions and structures. This variability increases the complexity of PU waste management. Biological recycling researchers have recently demonstrated great interest in polyethylene terephthalate. The adaptation of this route towards producing polyurethanes requires the discovery of enzymes that are able to depolymerize a large variety of PU. A laccase mediated system (LMS) was tested on four representative PU models, with different structures (foams and thermoplastics), and chemical compositions (polyester- and polyether-based PU). Size exclusion chromatography was performed on the thermoplastics and this revealed a significant reduction in the molar masses after 18 days of incubation at 37 °C. Degradation of foams under the same conditions was demonstrated by microscopy and compression assay for both polyester- and polyether-based PU. This study represents a major breakthrough in PU degradation, as it is the first time that enzymatic degradation has been clearly demonstrated on a polyether-based PU foam. This work is a step forward in the development of a sustainable recycling pathway, adapted to a large variety of PU materials.


Subject(s)
Laccase , Polyurethanes , Plastics , Polyesters , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL