Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
PLoS Comput Biol ; 20(1): e1011796, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38285716

ABSTRACT

Naturally occurring collective motion is a fascinating phenomenon in which swarming individuals aggregate and coordinate their motion. Many theoretical models of swarming assume idealized, perfect perceptual capabilities, and ignore the underlying perception processes, particularly for agents relying on visual perception. Specifically, biological vision in many swarming animals, such as locusts, utilizes monocular non-stereoscopic vision, which prevents perfect acquisition of distances and velocities. Moreover, swarming peers can visually occlude each other, further introducing estimation errors. In this study, we explore necessary conditions for the emergence of ordered collective motion under restricted conditions, using non-stereoscopic, monocular vision. We present a model of vision-based collective motion for locust-like agents: elongated shape, omni-directional visual sensor parallel to the horizontal plane, and lacking stereoscopic depth perception. The model addresses (i) the non-stereoscopic estimation of distance and velocity, (ii) the presence of occlusions in the visual field. We consider and compare three strategies that an agent may use to interpret partially-occluded visual information at the cost of the computational complexity required for the visual perception processes. Computer-simulated experiments conducted in various geometrical environments (toroidal, corridor, and ring-shaped arenas) demonstrate that the models can result in an ordered or near-ordered state. At the same time, they differ in the rate at which order is achieved. Moreover, the results are sensitive to the elongation of the agents. Experiments in geometrically constrained environments reveal differences between the models and elucidate possible tradeoffs in using them to control swarming agents. These suggest avenues for further study in biology and robotics.


Subject(s)
Grasshoppers , Motion Perception , Humans , Animals , Vision, Ocular , Models, Theoretical , Computer Simulation , Motion , Depth Perception
2.
BMC Biol ; 22(1): 129, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822347

ABSTRACT

BACKGROUND: The female locust is equipped with unique digging tools, namely two pairs of valves-a dorsal and a ventral-utilized for excavating an underground hole in which she lays her eggs. This apparatus ensures that the eggs are protected from potential predators and provides optimal conditions for successful hatching. The dorsal and the ventral valves are assigned distinct roles in the digging process. Specifically, the ventral valves primarily function as anchors during propagation, while the dorsal valves displace soil and shape the underground tunnel. RESULTS: In this study, we investigated the noticeable asymmetry and distinct shapes of the valves, using a geometrical model and a finite element method. Our analysis revealed that although the two pairs of valves share morphological similarities, they exhibit different 3D characteristics in terms of absolute size and structure. We introduced a structural characteristic, the skew of the valve cross-section, to quantify the differences between the two pairs of valves. Our findings indicate that these structural variations do not significantly contribute to the valves' load-bearing capabilities under external forces. CONCLUSIONS: The evolutionary development of the form of the female locust digging valves is more aligned with fitting their respective functions rather than solely responding to biomechanical support needs. By understanding the intricate features of these locust valves, and using our geometrical model, valuable insights can be obtained for creating more efficient and specialized tools for various digging applications.


Subject(s)
Grasshoppers , Animals , Female , Grasshoppers/physiology , Grasshoppers/anatomy & histology , Biomechanical Phenomena , Finite Element Analysis
3.
Article in English | MEDLINE | ID: mdl-38252321

ABSTRACT

Crickets serve as a well-established model organism in biological research spanning various fields, such as behavior, physiology, neurobiology, and ecology. Cricket circadian behavior was first reported over a century ago and prompted a wealth of studies delving into their chronobiology. Circadian rhythms have been described in relation to fundamental cricket behaviors, encompassing stridulation and locomotion, but also in hormonal secretion and gene expression. Here we review how changes in illumination patterns and light intensity differentially impact the different cricket behaviors as well as circadian gene expression. We further describe the cricket's circadian pacemaker. Ample anatomical manipulations support the location of a major circadian pacemaker in the cricket optic lobes and another in the central brain, possibly interconnected via signaling of the neuropeptide PDF. The cricket circadian machinery comprises a molecular cascade based on two major transcriptional/translational negative feedback loops, deviating somewhat from the canonical model of Drosophila and emphasizing the significance of exploring alternative models. Finally, the nocturnal nature of crickets has provided a unique avenue for investigating the repercussions of artificial light at night on cricket behavior and ecology, underscoring the critical role played by natural light cycles in synchronizing cricket behaviors and populations, further supporting the use of the cricket model in the study of the effects of light on insects. Some gaps in our knowledge and challenges for future studies are discussed.


Subject(s)
Cricket Sport , Gryllidae , Neuropeptides , Animals , Circadian Rhythm/physiology , Locomotion , Neuropeptides/metabolism , Optic Lobe, Nonmammalian/metabolism
4.
Biol Lett ; 20(2): 20230468, 2024 02.
Article in English | MEDLINE | ID: mdl-38378141

ABSTRACT

Intermittent motion is prevalent in animal locomotion. Of special interest is the case of collective motion, in which social and environmental information must be processed in order to establish coordinated movement. We explored this nexus in locust, focusing on how intermittent motion interacts with swarming-related visual-based decision-making. Using a novel approach, we compared individual locust behaviour in response to continuously moving stimuli, with their response in semi-closed-loop conditions, in which the stimuli moved either in phase with the locust walking, or out of phase, i.e. only during the locust's pauses. Our findings clearly indicate the greater tendency of a locust to respond and 'join the swarming motion' when the visual stimuli were presented during its pauses. Hence, the current study strongly confirms previous indications of the dominant role of pauses in the collective motion-related decision-making of locusts. The presented insights contribute to a deeper general understanding of how intermittent motion contributes to group cohesion and coordination in animal swarms.


Subject(s)
Grasshoppers , Animals , Grasshoppers/physiology , Locomotion/physiology , Behavior, Animal/physiology , Visual Perception , Motion
5.
Naturwissenschaften ; 111(5): 43, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115554

ABSTRACT

The female locust lays its eggs deep within soft substrate to protect them from predators and provide optimal conditions for successful development and hatching. During oviposition digging, the female's abdomen is pooled and extends into the ground, guided by a dedicated excavation mechanism at its tip, comprising two pairs of specialized digging valves. Little is known about how these active valves negotiate the various obstacles encountered on their path. In this study, female locusts oviposited their eggs in specialized sand-filled tubes with pre-inserted 3D-printed plastic obstacles. The subterranean route taken by the abdomen and digging valves upon encountering the obstacles was investigated, characterized, and compared to that in control tubes without obstacles. Data were obtained by way of visual inspection, by utilizing cone beam computed tomography scans in high-definition mode, and by making paraffin casts of the oviposition burrows (after egg hatching). We demonstrate, for the first time, the subterranean navigation ability of the female locust's excavation mechanism and its ability to circumvent obstacles during oviposition. Finally, we discuss the role of active sensory-motor mechanisms versus the passive embodied function of the valves, central control, and decision-making.


Subject(s)
Grasshoppers , Oviposition , Animals , Oviposition/physiology , Female , Grasshoppers/physiology
6.
Proc Biol Sci ; 290(1991): 20221862, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36651041

ABSTRACT

Collectively moving groups of animals rely on the decision-making of locally interacting individuals in order to maintain swarm cohesion. However, the complex and noisy visual environment poses a major challenge to the extraction and processing of relevant information. We addressed this challenge by studying swarming-related decision-making in desert locust last-instar nymphs. Controlled visual stimuli, in the form of random dot kinematograms, were presented to tethered locust nymphs in a trackball set-up, while monitoring movement trajectory and walking parameters. In a complementary set of experiments, the neurophysiological basis of the observed behavioural responses was explored. Our results suggest that locusts use filtering and discrimination upon encountering multiple stimuli simultaneously. Specifically, we show that locusts are sensitive to differences in speed at the individual conspecific level, and to movement coherence at the group level, and may use these to filter out non-relevant stimuli. The locusts also discriminate and assign different weights to different stimuli, with an observed interactive effect of stimulus size, relative abundance and motion direction. Our findings provide insights into the cognitive abilities of locusts in the domain of decision-making and visual-based collective motion, and support locusts as a model for investigating sensory-motor integration and motion-related decision-making in the intricate swarm environment.


Subject(s)
Grasshoppers , Visual Perception , Animals , Grasshoppers/physiology , Movement , Motion
7.
Environ Microbiol ; 24(1): 507-516, 2022 01.
Article in English | MEDLINE | ID: mdl-35068041

ABSTRACT

Locust plagues are a notorious, ancient phenomenon. These swarming pests tend to aggregate and perform long migrations, decimating cultivated fields along their path. When population density is low, however, the locusts will express a cryptic, solitary, non-aggregating phenotype that is not considered a pest. Although the transition from the solitary to the gregarious phase has been well studied, associated shifts in the locust's microbiome have yet to be addressed. Here, using 16S rRNA amplicon sequencing, we compared the bacterial composition of solitary desert locusts before and after a phase transition. Our findings revealed that the microbiome is altered during the phase transition, and that a major aspect of this change is the acquisition of Weissella (Firmicutes). Our findings led us to hypothesize that the locust microbiome plays a role in inducing aggregation behaviour, contributing to the formation and maintenance of a swarm. Employing a mathematical model, we demonstrate the potential evolutionary advantage of inducing aggregation under different conditions; specifically, when the aggregation-inducing microbe exhibits a relatively high horizontal transmission rate. This is the first report of a previously unknown and important aspect of locust phase transition, demonstrating that the phase shift includes a shift in the gut and integument bacterial composition.


Subject(s)
Grasshoppers , Microbiota , Animals , Bacteria/genetics , Grasshoppers/genetics , Microbiota/genetics , Population Density , RNA, Ribosomal, 16S/genetics
8.
Int J Mol Sci ; 23(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36232659

ABSTRACT

Light is the major signal entraining the circadian clock that regulates physiological and behavioral rhythms in most organisms, including insects. Artificial light at night (ALAN) disrupts the natural light-dark cycle and negatively impacts animals at various levels. We simulated ALAN using dim light stimuli and tested their impact on gene expression in the cricket Gryllus bimaculatus, a model of insect physiology and chronobiology. At night, adult light-dark-regime-raised crickets were exposed for 30 min to a light pulse of 2-40 lx. The relative expression of five circadian-clock-associated genes was compared using qPCR. A dim ALAN pulse elicited tissue-dependent differential expression in some of these genes. The strongest effect was observed in the brain and in the optic lobe, the cricket's circadian pacemaker. The expression of opsin-Long Wave (opLW) was upregulated, as well as cryptochrome1-2 (cry) and period (per). Our findings demonstrate that even a dim ALAN exposure may affect insects at the molecular level, underscoring the impact of ALAN on the circadian clock system.


Subject(s)
Circadian Clocks , Gryllidae , Animals , Circadian Clocks/genetics , Circadian Rhythm/genetics , Gryllidae/genetics , Light , Opsins/metabolism , Photoperiod
9.
Environ Microbiol ; 23(5): 2461-2472, 2021 05.
Article in English | MEDLINE | ID: mdl-33645872

ABSTRACT

A hallmark of the desert locust's ancient and deserved reputation as a devastating agricultural pest is that of the long-distance, multi-generational migration of locust swarms to new habitats. The bacterial symbionts that reside within the locust gut comprise a key aspect of its biology, augmenting its immunity and having also been reported to be involved in the swarming phenomenon through the emission of attractant volatiles. However, it is still unclear whether and how these beneficial symbionts are transmitted vertically from parent to offspring. Using comparative 16S rRNA amplicon sequencing and direct experiments with engineered bacteria, we provide evidence for vertical transmission of locust gut bacteria. The females may perform this activity by way of inoculation of the egg-pod's foam plug, through which the larvae pass upon hatching. Furthermore, analysis of the composition of the foam revealed chitin to be its major component, along with immunity-related proteins such as lysozyme, which could be responsible for the inhibition of some bacteria in the foam while allowing other, more beneficial, strains to proliferate. Our findings reveal a potential vector for the transgenerational transmission of symbionts in locusts, which contributes to the locust swarm's ability to invade and survive in new territories.


Subject(s)
Grasshoppers , Animals , Bacteria/genetics , Female , Hong Kong , Larva , RNA, Ribosomal, 16S/genetics
10.
Proc Biol Sci ; 288(1959): 20211626, 2021 09 29.
Article in English | MEDLINE | ID: mdl-34547907

ABSTRACT

Living organisms experience a worldwide continuous increase in artificial light at night (ALAN), negatively affecting their behaviour. The field cricket, an established model in physiology and behaviour, can provide insights into the effect of ALAN on insect behaviour. The stridulation and locomotion patterns of adult male crickets reared under different lifelong ALAN intensities were monitored simultaneously for five consecutive days in custom-made anechoic chambers. Daily activity periods and acrophases were compared between the experimental groups. Control crickets exhibited a robust rhythm, stridulating at night and demonstrating locomotor activity during the day. By contrast, ALAN affected both the relative level and timing of the crickets' nocturnal and diurnal activity. ALAN induced free-running patterns, manifested in significant changes in the median and variance of the activity periods, and even arrhythmic behaviour. The magnitude of disruption was light intensity dependent, revealing an increase in the difference between the activity periods calculated for stridulation and locomotion in the same individual. This finding may indicate the existence of two peripheral clocks. Our results demonstrate that ecologically relevant ALAN intensities affect crickets' behavioural patterns, and may lead to decoupling of locomotion and stridulation behaviours at the individual level, and to loss of synchronization at the population level.


Subject(s)
Gryllidae , Animals , Circadian Rhythm , Light , Light Pollution , Locomotion , Male
11.
Sensors (Basel) ; 21(1)2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33401414

ABSTRACT

During hundreds of millions of years of evolution, insects have evolved some of the most efficient and robust sensing organs, often far more sensitive than their man-made equivalents. In this study, we demonstrate a hybrid bio-technological approach, integrating a locust tympanic ear with a robotic platform. Using an Ear-on-a-Chip method, we manage to create a long-lasting miniature sensory device that operates as part of a bio-hybrid robot. The neural signals recorded from the ear in response to sound pulses, are processed and used to control the robot's motion. This work is a proof of concept, demonstrating the use of biological ears for robotic sensing and control.


Subject(s)
Grasshoppers , Robotics , Animals , Ear, Middle , Lab-On-A-Chip Devices , Sound
12.
J Exp Biol ; 222(Pt 8)2019 04 26.
Article in English | MEDLINE | ID: mdl-30910833

ABSTRACT

Large insects actively ventilate their tracheal system even at rest, using abdominal pumping movements, which are controlled by a central pattern generator (CPG) in the thoracic ganglia. We studied the effects of respiratory gases on the ventilatory rhythm by isolating the thoracic ganglia and perfusing its main tracheae with various respiratory gas mixtures. Fictive ventilation activity was recorded from motor nerves controlling spiracular and abdominal ventilatory muscles. Both hypoxia and hypercapnia increased the ventilation rate, with the latter being much more potent. Sub-threshold hypoxic and hypercapnic levels were still able to modulate the rhythm as a result of interactions between the effects of the two respiratory gases. Additionally, changing the oxygen levels in the bathing saline affected ventilation rate, suggesting a modulatory role for haemolymph oxygen. Central sensing of both respiratory gases as well as interactions of their effects on the motor output of the ventilatory CPG reported here indicate convergent evolution of respiratory control among terrestrial animals of distant taxa.


Subject(s)
Grasshoppers/physiology , Animals , Ganglia/physiology , Male , Motor Activity , Respiration
13.
J Exp Biol ; 221(Pt 6)2018 03 15.
Article in English | MEDLINE | ID: mdl-29386224

ABSTRACT

Discontinuous gas exchange (DGE) is the best studied among insect gas exchange patterns. DGE cycles comprise three phases, which are defined by their spiracular state: closed, flutter and open. However, spiracle status has rarely been monitored directly; rather, it is often assumed based on CO2 emission traces. In this study, we directly recorded electromyogram (EMG) signals from the closer muscle of the second thoracic spiracle and from abdominal ventilation muscles in a fully intact locust during DGE. Muscular activity was monitored simultaneously with CO2 emission, under normoxia and under various experimental oxic conditions. Our findings indicate that locust DGE does not correspond well with the commonly described three-phase cycle. We describe unique DGE-related ventilation motor patterns, coupled to spiracular activity. During the open phase, when CO2 emission rate is highest, the thoracic spiracles do not remain open; rather, they open and close rapidly. This fast spiracle activity coincides with in-phase abdominal ventilation, while alternating with the abdominal spiracle and thus facilitating a unidirectional air flow along the main trachea. A change in the frequency of rhythmic ventilation during the open phase suggests modulation by intra-tracheal CO2 levels. A second, slow ventilatory movement pattern probably serves to facilitate gas diffusion during spiracle closure. Two flutter-like patterns are described in association with the different types of ventilatory activity. We offer a modified mechanistic model for DGE in actively ventilating insects, incorporating ventilatory behavior and changes in spiracle state.


Subject(s)
Grasshoppers/physiology , Oxygen/analysis , Animals , Electromyography , Muscles/physiology , Respiration
14.
PLoS Comput Biol ; 11(12): e1004522, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26656851

ABSTRACT

Over the past decade, technological advances in experimental and animal tracking techniques have motivated a renewed theoretical interest in animal collective motion and, in particular, locust swarming. This review offers a comprehensive biological background followed by comparative analysis of recent models of locust collective motion, in particular locust marching, their settings, and underlying assumptions. We describe a wide range of recent modeling and simulation approaches, from discrete agent-based models of self-propelled particles to continuous models of integro-differential equations, aimed at describing and analyzing the fascinating phenomenon of locust collective motion. These modeling efforts have a dual role: The first views locusts as a quintessential example of animal collective motion. As such, they aim at abstraction and coarse-graining, often utilizing the tools of statistical physics. The second, which originates from a more biological perspective, views locust swarming as a scientific problem of its own exceptional merit. The main goal should, thus, be the analysis and prediction of natural swarm dynamics. We discuss the properties of swarm dynamics using the tools of statistical physics, as well as the implications for laboratory experiments and natural swarms. Finally, we stress the importance of a combined-interdisciplinary, biological-theoretical effort in successfully confronting the challenges that locusts pose at both the theoretical and practical levels.


Subject(s)
Animal Distribution/physiology , Behavior, Animal/physiology , Grasshoppers/physiology , Locomotion/physiology , Mass Behavior , Models, Biological , Animal Migration , Animals , Computer Simulation , Crowding , Models, Statistical , Nymph/physiology
15.
Biol Lett ; 12(12)2016 Dec.
Article in English | MEDLINE | ID: mdl-28003523

ABSTRACT

The adaptive nature of discontinuous gas exchange (DGE) in insects is contentious. The classic 'hygric hypothesis', which posits that DGE serves to reduce respiratory water loss (RWL), is still the best supported. We thus focused on the hygric hypothesis in this first-ever experimental evolution study of any of the competing adaptive hypotheses. We compared populations of the migratory locust (Locusta migratoria) that underwent 10 consecutive generations of selection for desiccation resistance with control populations. Selected locusts survived 36% longer under desiccation stress but DGE prevalence did not differ between these and control populations (approx. 75%). Evolved changes in DGE properties in the selected locusts included longer cycle and interburst durations. However, in contrast with predictions of the hygric hypothesis, these changes were not associated with reduced RWL rates. Other responses observed in the selected locusts were higher body water content when hydrated and lower total evaporative water loss rates. Hence, our data suggest that DGE cycle properties in selected locusts are a consequence of an evolved increased ability to store water, and thus an improved capacity to buffer accumulated CO2, rather than an adaptive response to desiccation. We conclude that DGE is unlikely to be an evolutionary response to dehydration challenge in locusts.


Subject(s)
Locusta migratoria/physiology , Animals , Body Water , Locusta migratoria/genetics , Respiration , Selection, Genetic , Water/metabolism , Water Loss, Insensible
16.
Cytometry A ; 87(6): 513-23, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25393432

ABSTRACT

Large scale phase-contrast images taken at high resolution through the life of a cultured neuronal network are analyzed by a graph-based unsupervised segmentation algorithm with a very low computational cost, scaling linearly with the image size. The processing automatically retrieves the whole network structure, an object whose mathematical representation is a matrix in which nodes are identified neurons or neurons' clusters, and links are the reconstructed connections between them. The algorithm is also able to extract any other relevant morphological information characterizing neurons and neurites. More importantly, and at variance with other segmentation methods that require fluorescence imaging from immunocytochemistry techniques, our non invasive measures entitle us to perform a longitudinal analysis during the maturation of a single culture. Such an analysis furnishes the way of individuating the main physical processes underlying the self-organization of the neurons' ensemble into a complex network, and drives the formulation of a phenomenological model yet able to describe qualitatively the overall scenario observed during the culture growth.


Subject(s)
Algorithms , Image Processing, Computer-Assisted/methods , Models, Biological , Neurites/physiology , Neurons/cytology , Cells, Cultured , Computational Biology/methods , Systems Biology/methods
17.
J Exp Biol ; 218(Pt 23): 3807-15, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26486365

ABSTRACT

The termination of discontinuous gas exchange cycles (DGCs) in severely dehydrated insects casts doubt on the generality of the hygric hypothesis, which posits that DGCs evolved as a water conservation mechanism. We followed DGC characteristics in the two density-dependent phases of the desert locust Schistocerca gregaria throughout exposure to an experimental treatment of combined dehydration and starvation stress, and subsequent rehydration. We hypothesized that, under stressful conditions, the more stress-resistant gregarious locusts would maintain DGCs longer than solitary locusts. However, we found no phase-specific variations in body water content, water loss rates (total and respiratory) or timing of stress-induced abolishment of DGCs. Likewise, locusts of both phases re-employed DGCs after ingesting comparable volumes of water when rehydrated. Despite comparable water management performances, the effect of exposure to stressful experimental conditions on DGC characteristics varied significantly between gregarious and solitary locusts. Interburst duration, which is affected by the ability to buffer CO2, was significantly reduced in dehydrated solitary locusts compared with gregarious locusts. Moreover, despite similar rehydration levels, only gregarious locusts recovered their initial CO2 accumulation capacity, indicating that cycle characteristics are affected by factors other than haemolymph volume. Haemolymph protein measurements and calculated respiratory exchange ratios suggest that catabolism of haemolymph proteins may contribute to a reduced haemolymph buffering capacity, and thus a compromised ability for CO2 accumulation, in solitary locusts. Nevertheless, DGC was lost at similar hydration states in the two phases, suggesting that DGCs are terminated as a result of inadequate oxygen supply to the tissues.


Subject(s)
Carbon Dioxide/metabolism , Grasshoppers/physiology , Animals , Energy Metabolism , Food Deprivation , Grasshoppers/metabolism , Hemolymph/chemistry , Phenotype , Pulmonary Gas Exchange , Respiration , Stress, Physiological , Water/metabolism
18.
J Exp Biol ; 218(Pt 16): 2510-7, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26290590

ABSTRACT

The significance of discontinuous gas-exchange cycles (DGC) in reducing respiratory water loss (RWL) in insects is contentious. Results from single-species studies are equivocal in their support of the classic 'hygric hypothesis' for the evolution of DGC, whereas comparative analyses generally support a link between DGC and water balance. In this study, we investigated DGC prevalence and characteristics and RWL in three grasshopper species (Acrididae, subfamily Pamphaginae) across an aridity gradient in Israel. In order to determine whether DGC contributes to a reduction in RWL, we compared the DGC characteristics and RWL associated with CO2 release (transpiration ratio, i.e. the molar ratio of RWL to CO2 emission rates) among these species. Transpiration ratios of DGC and continuous breathers were also compared intraspecifically. Our data show that DGC characteristics, DGC prevalence and the transpiration ratios correlate well with habitat aridity. The xeric-adapted Tmethis pulchripennis exhibited a significantly shorter burst period and lower transpiration ratio compared with the other two mesic species, Ocneropsis bethlemita and Ocneropsis lividipes. However, DGC resulted in significant water savings compared with continuous exchange in T. pulchripennis only. These unique DGC characteristics for T. pulchripennis were correlated with its significantly higher mass-specific tracheal volume. Our data suggest that the origin of DGC may not be adaptive, but rather that evolved modulation of cycle characteristics confers a fitness advantage under stressful conditions. This modulation may result from morphological and/or physiological modifications.


Subject(s)
Grasshoppers/physiology , Animals , Carbon Dioxide/metabolism , Ecosystem , Male , Pulmonary Gas Exchange , Respiration , Species Specificity , Water Loss, Insensible
19.
J Exp Biol ; 218(Pt 2): 285-97, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25609786

ABSTRACT

Cockroaches are remarkably stable runners, exhibiting rapid recovery from external perturbations. To uncover the mechanisms behind this important behavioral trait, we recorded leg kinematics of freely running animals in both undisturbed and perturbed trials. Functional coupling underlying inter-leg coordination was monitored before and during localized perturbations, which were applied to single legs via magnetic impulses. The resulting transient effects on all legs and the recovery times to normal pre-perturbation kinematics were studied. We estimated coupling architecture and strength by fitting experimental data to a six-leg-unit phase oscillator model. Using maximum-likelihood techniques, we found that a network with nearest-neighbor inter-leg coupling best fitted the data and that, although coupling strengths vary among preparations, the overall inputs entering each leg are approximately balanced and consistent. Simulations of models with different coupling strengths encountering perturbations suggest that the coupling schemes estimated from our experiments allow animals relatively fast and uniform recoveries from perturbations.


Subject(s)
Cockroaches/physiology , Extremities/physiology , Running , Animals , Biomechanical Phenomena
20.
iScience ; 27(6): 109922, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38799584

ABSTRACT

A city's economic growth and the inhabitants' wellbeing are highly affected by its topology and connecting networks, which, in turn, influence movement and flows in the city. Flow relates to how a city is developed, organized, managed, and built. The analysis of flow in cities is challenging but essential. In this study, the fields of urban design and animal science are combined, and a new approach for exploring the relationships between urban topology and physical flow is developed. Specifically, we establish an interdisciplinary methodology to evaluate mobility performance in various urban settings, utilizing experimental observations of the dynamic behavior of natural-biological agents, i.e., locusts, within physical city models. Our novel approach enriches the currently available toolbox by using living organisms as indicators for flow in physical city models. Our findings improve our understanding of the intricate flow interactions in urban settings.

SELECTION OF CITATIONS
SEARCH DETAIL