Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
EMBO J ; 42(11): e110902, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37039106

ABSTRACT

Oncogenic RAS signaling reprograms gene expression through both transcriptional and post-transcriptional mechanisms. While transcriptional regulation downstream of RAS is relatively well characterized, how RAS post-transcriptionally modulates gene expression to promote malignancy remains largely unclear. Using quantitative RNA interactome capture analysis, we here reveal that oncogenic RAS signaling reshapes the RNA-bound proteomic landscape of pancreatic cancer cells, with a network of nuclear proteins centered around nucleolin displaying enhanced RNA-binding activity. We show that nucleolin is phosphorylated downstream of RAS, which increases its binding to pre-ribosomal RNA (rRNA), boosts rRNA production, and promotes ribosome biogenesis. This nucleolin-dependent enhancement of ribosome biogenesis is crucial for RAS-induced pancreatic cancer cell proliferation and can be targeted therapeutically to inhibit tumor growth. Our results reveal that oncogenic RAS signaling drives ribosome biogenesis by regulating the RNA-binding activity of nucleolin and highlight a crucial role for this mechanism in RAS-mediated tumorigenesis.


Subject(s)
Genes, ras , Pancreatic Neoplasms , Humans , MAP Kinase Signaling System , Proteomics , Phosphoproteins/metabolism , RNA, Ribosomal/metabolism , RNA/metabolism , Cell Transformation, Neoplastic/genetics , Ribosomes/genetics , Ribosomes/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Nucleolin
2.
Dev Cell ; 55(3): 298-313.e10, 2020 11 09.
Article in English | MEDLINE | ID: mdl-33171110

ABSTRACT

Translation of ribosomal protein-coding mRNAs (RP-mRNAs) constitutes a key step in ribosome biogenesis, but the mechanisms that modulate RP-mRNA translation in coordination with other cellular processes are poorly defined. Here, we show that subcellular localization of RP-mRNAs acts as a key regulator of their translation during cell migration. As cells migrate into their surroundings, RP-mRNAs localize to the actin-rich cell protrusions. This localization is mediated by La-related protein 6 (LARP6), an RNA-binding protein that is enriched in protrusions. Protrusions act as hotspots of translation for RP-mRNAs, enhancing RP synthesis, ribosome biogenesis, and the overall protein synthesis in migratory cells. In human breast carcinomas, epithelial-to-mesenchymal transition (EMT) upregulates LARP6 expression to enhance protein synthesis and support invasive growth. Our findings reveal LARP6-mediated mRNA localization as a key regulator of ribosome biogenesis during cell migration and demonstrate a role for this process in cancer progression downstream of EMT.


Subject(s)
Cell Movement , Organelle Biogenesis , RNA Transport , Ribosomes/metabolism , Autoantigens/metabolism , Cell Proliferation , Cell Surface Extensions/metabolism , Epithelial-Mesenchymal Transition , Humans , Neoplasms/metabolism , Neoplasms/pathology , Protein Binding , Protein Biosynthesis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribonucleoproteins/metabolism , Ribosomal Proteins/metabolism , Subcellular Fractions/metabolism , Transcriptome/genetics , SS-B Antigen
SELECTION OF CITATIONS
SEARCH DETAIL