Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Skeletal Radiol ; 53(4): 649-656, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37740079

ABSTRACT

OBJECTIVE: Cartilage degeneration involves structural, compositional, and biomechanical alterations that may be detected non-invasively using quantitative MRI. The goal of this study was to determine if topographical variation in T1rho values correlates with indentation stiffness and biochemical contents of human patellar cartilage. DESIGN: Cadaveric patellae from unilateral knees of 5 donors with moderate degeneration were imaged at 3-Telsa with spiral chopped magnetization preparation T1rho sequence. Indentation testing was performed, followed by biochemical analyses to determine water and sulfated glycosaminoglycan contents. T1rho values were compared to indentation stiffness, using semi-circular regions of interest (ROIs) of varying sizes at each indentation site. ROIs matching the resected tissues were analyzed, and univariate and multivariate regression analyses were performed to compare T1rho values to biochemical contents. RESULTS: Grossly, superficial degenerative change of the cartilage (i.e., roughened texture and erosion) corresponded with regions of high T1rho values. High T1rho values correlated with low indentation stiffness, and the strength of correlation varied slightly with the ROI size. Spatial variations in T1rho values correlated positively with that of the water content (R2 = 0.10, p < 0.05) and negatively with the variations in the GAG content (R2 = 0.13, p < 0.01). Multivariate correlation (R2 = 0.23, p < 0.01) was stronger than either of the univariate correlations. CONCLUSION: These results demonstrate the sensitivity of T1rho values to spatially varying function and composition of cartilage and that the strength of correlation depends on the method of data analysis and consideration of multiple variables.


Subject(s)
Cartilage, Articular , Humans , Cartilage, Articular/diagnostic imaging , Patella/diagnostic imaging , Knee , Magnetic Resonance Imaging/methods , Water
2.
Sensors (Basel) ; 24(17)2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39275753

ABSTRACT

INTRODUCTION: The disco-vertebral junction (DVJ) of the lumbar spine contains thin structures with short T2 values, including the cartilaginous endplate (CEP) sandwiched between the bony vertebral endplate (VEP) and the nucleus pulposus (NP). We previously demonstrated that ultrashort-echo-time (UTE) MRI, compared to conventional MRI, is able to depict the tissues at the DVJ with improved contrast. In this study, we sought to further optimize UTE MRI by characterizing the contrast-to-noise ratio (CNR) of these tissues when either single echo or echo subtraction images are used and with varying echo times (TEs). METHODS: In four cadaveric lumbar spines, we acquired 3D Cones (a UTE sequence) images at varying TEs from 0.032 ms to 16 ms. Additionally, spin echo T1- and T2-weighted images were acquired. The CNRs of CEP-NP and CEP-VEP were measured in all source images and 3D Cones echo subtraction images. RESULTS: In the spin echo images, it was challenging to distinguish the CEP from the VEP, as both had low signal intensity. However, the 3D Cones source images at the shortest TE of 0.032 ms provided an excellent contrast between the CEP and the VEP. As the TE increased, the contrast decreased in the source images. In contrast, the 3D Cones echo subtraction images showed increasing CNR values as the second TE increased, reaching statistical significance when the second TE was above 10 ms (p < 0.05). CONCLUSIONS: Our study highlights the feasibility of incorporating UTE MRI for the evaluation of the DVJ and its advantages over conventional spin echo sequences for improving the contrast between the CEP and adjacent tissues. Additionally, modulation of the contrast for the target tissues can be achieved using either source images or subtraction images, as well as by varying the echo times.


Subject(s)
Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Lumbar Vertebrae/diagnostic imaging , Intervertebral Disc/diagnostic imaging , Signal-To-Noise Ratio , Imaging, Three-Dimensional/methods , Nucleus Pulposus/diagnostic imaging
3.
Magn Reson Med ; 90(5): 2001-2010, 2023 11.
Article in English | MEDLINE | ID: mdl-37288577

ABSTRACT

PURPOSE: To develop 3D ultrashort-TE (UTE) sequences with tight TE intervals (δTE), allowing for accurate T 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping of lungs under free breathing. METHODS: We have implemented a four-echo UTE sequence with δTE (< 0.5 ms). A Monte-Carlo simulation was performed to identify an optimal number of echoes that would result in a significant improvement in the accuracy of the T 2 * $$ {\mathrm{T}}_2^{\ast } $$ fit within an acceptable scan time. A validation study was conducted on a phantom with known short T 2 * $$ {\mathrm{T}}_2^{\ast } $$ values (< 5 ms). The scanning protocol included a combination of a standard multi-echo UTE with six echoes (2.2-ms intervals) and a new four-echo UTE (TE < 2 ms) with tight TE intervals δTE. The human imaging was performed at 3 T on 6 adult volunteers. T 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping was performed with mono-exponential and bi-exponential models. RESULTS: The simulation for the proposed 10-echo acquisition predicted over 2-fold improvement in the accuracy of estimating the short T 2 * $$ {\mathrm{T}}_2^{\ast } $$ compared with the regular six-echo acquisition. In the phantom study, the T 2 * $$ {\mathrm{T}}_2^{\ast } $$ was measured up to three times more accurately compared with standard six-echo UTE. In human lungs, T 2 * $$ {\mathrm{T}}_2^{\ast } $$ maps were successfully obtained from 10 echoes, yielding average values T 2 * $$ {\mathrm{T}}_2^{\ast } $$ = 1.62 ± 0.48 ms for mono-exponential and T 2 s * $$ {\mathrm{T}}_{2s}^{\ast } $$ = 1.00 ± 0.53 ms for bi-exponential models. CONCLUSION: A UTE sequence using δTE was implemented and validated on short T 2 * $$ {\mathrm{T}}_2^{\ast } $$ phantoms. The sequence was successfully applied for lung imaging; the bi-exponential signal model fit for human lung imaging may provide valuable insights into the diseased human lungs.


Subject(s)
Imaging, Three-Dimensional , Magnetic Resonance Imaging , Adult , Humans , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Image Interpretation, Computer-Assisted/methods , Lung/diagnostic imaging
4.
Eur Spine J ; 32(7): 2358-2367, 2023 07.
Article in English | MEDLINE | ID: mdl-37195362

ABSTRACT

PURPOSE: Using ultrashort echo time (UTE) MRI, we determined prevalence of abnormal cartilaginous endplate (CEP), and the relationship between CEP and disc degeneration in human lumbar spines. MATERIALS AND METHODS: Lumbar spines from 71 cadavers (age 14-74 years) were imaged at 3 T using sagittal UTE and spin echo T2 map sequences. On UTE images, CEP morphology was defined as "normal" with linear high signal intensity or "abnormal" with focal signal loss and/or irregularity. On spin echo images, disc grade and T2 values of the nucleus pulposus (NP) and annulus fibrosus (AF) were determined. 547 CEPs and 284 discs were analysed. Effects of age, sex, and level on CEP morphology, disc grade, and T2 values were determined. Effects of CEP abnormality on disc grade, T2 of NP, and T2 of AF were also determined. RESULTS: Overall prevalence of CEP abnormality was 33% and it tended to increase with older ages (p = 0.08) and at lower spinal levels of L5 than L2 or L3 (p = 0.001). Disc grades were higher and T2 values of the NP were lower in older spines (p < 0.001) and at lower disc level of L4-5 (p < 0.05). We found significant association between CEP and disc degeneration; discs adjacent to abnormal CEPs had high grades (p < 0.01) and lower T2 values of the NP (p < 0.05). CONCLUSION: These results suggest that abnormal CEPs are frequently found, and it associates significantly with disc degeneration, suggesting an insight into pathoetiology of disc degeneration.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Humans , Aged , Adolescent , Young Adult , Adult , Middle Aged , Intervertebral Disc Degeneration/diagnostic imaging , Cartilage , Magnetic Resonance Imaging/methods , Lumbar Vertebrae/diagnostic imaging
5.
Sensors (Basel) ; 23(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37766055

ABSTRACT

Isthmic spondylolysis results in fracture of pars interarticularis of the lumbar spine, found in as many as half of adolescent athletes with persistent low back pain. While computed tomography (CT) is the gold standard for the diagnosis of spondylolysis, the use of ionizing radiation near reproductive organs in young subjects is undesirable. While magnetic resonance imaging (MRI) is preferable, it has lowered sensitivity for detecting the condition. Recently, it has been shown that ultrashort echo time (UTE) MRI can provide markedly improved bone contrast compared to conventional MRI. To take UTE MRI further, we developed supervised deep learning tools to generate (1) CT-like images and (2) saliency maps of fracture probability from UTE MRI, using ex vivo preparation of cadaveric spines. We further compared quantitative metrics of the contrast-to-noise ratio (CNR), mean squared error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM) between UTE MRI (inverted to make the appearance similar to CT) and CT and between CT-like images and CT. Qualitative results demonstrated the feasibility of successfully generating CT-like images from UTE MRI to provide easier interpretability for bone fractures thanks to improved image contrast and CNR. Quantitatively, the mean CNR of bone against defect-filled tissue was 35, 97, and 146 for UTE MRI, CT-like, and CT images, respectively, being significantly higher for CT-like than UTE MRI images. For the image similarity metrics using the CT image as the reference, CT-like images provided a significantly lower mean MSE (0.038 vs. 0.0528), higher mean PSNR (28.6 vs. 16.5), and higher SSIM (0.73 vs. 0.68) compared to UTE MRI images. Additionally, the saliency maps enabled quick detection of the location with probable pars fracture by providing visual cues to the reader. This proof-of-concept study is limited to the data from ex vivo samples, and additional work in human subjects with spondylolysis would be necessary to refine the models for clinical use. Nonetheless, this study shows that the utilization of UTE MRI and deep learning tools could be highly useful for the evaluation of isthmic spondylolysis.


Subject(s)
Deep Learning , Fractures, Bone , Spondylolysis , Adolescent , Humans , Magnetic Resonance Imaging/methods , Tomography, X-Ray Computed/methods , Spondylolysis/diagnostic imaging
6.
J Magn Reson Imaging ; 56(5): 1591-1599, 2022 11.
Article in English | MEDLINE | ID: mdl-35191562

ABSTRACT

BACKGROUND: While evaluation of blood perfusion in lumbar paraspinal muscles is of interest in low back pain, it has not been performed using noncontrast magnetic resonance (MR) techniques. PURPOSE: To introduce a novel application of a time-resolved, noncontrast MR perfusion technique for paraspinal muscles and demonstrate effect of exercise on perfusion parameters. STUDY TYPE: Longitudinal. SUBJECTS: Six healthy subjects (27-48 years old, two females) and two subjects with acute low back pain (46 and 65 years old females, one with diabetes/obesity). FIELD STRENGTH/SEQUENCE: 3-T, MR perfusion sequence. ASSESSMENT: Lumbar spines of healthy subjects were imaged axially at L3 level with a tag-on and tag-off alternating inversion recovery arterial spin labeling technique that suppresses background signal and acquires signal increase ratio (SIR) from the in-flow blood at varying inversion times (TI) from 0.12 seconds to 3.5 seconds. SIR vs. TI data were fit to determine the perfusion metrics of peak height (PH), time to peak (TTP), mean transit time, apparent muscle blood volume (MBV), and apparent muscle blood flow (MBF) in iliocostal, longissimus, and multifidus. Imaging was repeated immediately after healthy subjects performed a 20-minute walk, to determine the effect of exercise. STATISTICAL TESTS: Repeated measures analysis of variance. RESULTS: SIR vs. TI data showed well-defined leading and trailing edges, with sharply increasing SIR to TI of approximately 500 msec subsiding quickly to near zero around TI of 1500 msec. After exercise, the mean SIR at every TI increased markedly, resulting in significantly higher PH, MBV, and MBF (each P < 0.001 and F > 28.9), and a lower TTP (P < 0.05, F = 4.5), regardless of the muscle. MBF increased 2- to 2.5-fold after exercise, similar to the expected increase in cardiac output, given the intensity of the exercise. DATA CONCLUSIONS: Feasibility of an MR perfusion technique for muscle perfusion imaging was demonstrated, successfully detecting significantly increased perfusion after exercise. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 1.


Subject(s)
Low Back Pain , Paraspinal Muscles , Adult , Aged , Female , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Middle Aged , Paraspinal Muscles/diagnostic imaging , Perfusion , Perfusion Imaging
7.
Arthroscopy ; 38(7): 2255-2264, 2022 07.
Article in English | MEDLINE | ID: mdl-35042007

ABSTRACT

PURPOSE: To assess the effect of bone marrow aspiration concentrate (BMAC) augmentation on clinical outcomes and magnetic resonance imaging (MRI) findings in anterior cruciate ligament (ACL) reconstruction (ACLR) with bone-patellar tendon-bone (BTB) allografts. METHODS: A double-blinded, randomized controlled trial was conducted on 80 patients undergoing ACL reconstruction using BTB allografts. Patients were randomized to 2 groups: (1) bone marrow aspirate was collected from the iliac crest, concentrated, and approximately 2.5 mL was injected into the BTB allograft, or (2) a small sham incision was made at the iliac crest (control). MRI was performed at 3 months and 9 months postoperatively to determine the signal intensity ratio of the ACL graft. RESULTS: Seventy-three patients were available for follow-up at 1-year postoperatively (36 BMAC, 37 control). International Knee Documentation Committee (IKDC) scores were significantly greater in the BMAC group versus the control at the 9-month postoperative period (81.6 ± 10.5 vs 74.6 ± 14.2, P = .048). There was no significant difference in the proportion of patients who met the minimal clinically important difference for IKDC between the BMAC and control groups at 9 months (89% vs 85%; P = .7). Three months postoperatively, signal intensity ratio of the inferior third of the ACL graft was significantly greater in the BMAC group versus the control group (3.2 ± 2.2 vs 2.1 ± 1.5; P = .02). CONCLUSIONS: Patients who received BMAC augmentation of the BTB allograft during ACL reconstruction demonstrated greater signal intensity scores on MRI at 3 months, suggesting increased metabolic activity and remodeling, and potentially accelerated ligamentization. Additionally, patients in the BMAC group had greater patient-reported outcomes (IKDC) at 9 months postoperatively when compared with those who underwent a standard surgical procedure. There was no significant difference in the proportion of patients who met the minimal clinically important difference for IKDC between the BMAC and control groups at 9 months, suggesting limited clinical significance at this time point. LEVEL OF EVIDENCE: I, randomized control trial.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Allografts , Anterior Cruciate Ligament/surgery , Anterior Cruciate Ligament Injuries/surgery , Anterior Cruciate Ligament Reconstruction/methods , Bone Marrow/surgery , Humans , Knee Joint/surgery , Transplantation, Homologous , Treatment Outcome
8.
Skeletal Radiol ; 50(12): 2405-2414, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33983499

ABSTRACT

OBJECTIVE: To determine the ability of conventional spin echo (SE) T2 and ultrashort echo time (UTE) T2* relaxation times to characterize pathology in cadaveric meniscus samples. MATERIALS AND METHODS: From 10 human donors, 54 triangular (radially cut) meniscus samples were harvested. Meniscal pathology was classified as normal (n = 17), intrasubstance degenerated (n = 33), or torn (n = 4) using a modified arthroscopic grading system. Using a 3-T MR system, SE T2 and UTE T2* values of the menisci were determined, followed by histopathology. Effect of meniscal pathology on relaxation times and histology scores were determined, along with correlation between relaxation times and histology scores. RESULTS: Mean ± standard deviation UTE T2* values for normal, degenerated, and torn menisci were 3.6 ± 1.3 ms, 7.4 ± 2.5 ms, and 9.8 ± 5.7 ms, respectively, being significantly higher in degenerated (p < 0.0001) and torn (p = 0.0002) menisci compared to that in normal. In contrast, the respective mean SE T2 values were 27.7 ± 9.5 ms, 25.9 ± 7.0 ms, and 35.7 ± 10.4 ms, without significant differences between groups (all p > 0.14). In terms of histology, we found significant group-wise differences (each p < 0.05) in fiber organization and inner-tip surface integrity sub-scores, as well as the total score. Finally, we found a significant weak correlation between UTE T2* and histology total score (p = 0.007, Rs2 = 0.19), unlike the correlation between SE T2 and histology (p = 0.09, Rs2 = 0.05). CONCLUSION: UTE T2* values were found to distinguish normal from both degenerated and torn menisci and correlated significantly with histopathology.


Subject(s)
Knee Injuries , Meniscus , Tibial Meniscus Injuries , Humans , Magnetic Resonance Imaging , Meniscus/diagnostic imaging , Tibial Meniscus Injuries/diagnostic imaging
9.
Skeletal Radiol ; 49(12): 2019-2027, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32591855

ABSTRACT

OBJECTIVES: To compare regional differences in subchondral trabecular structure using high-resolution MRI in meniscus-covered/meniscus-uncovered tibia in cadaveric knees with intact/torn menisci. MATERIALS AND METHODS: 3D proton density CUBE MRI of 6 cadaveric knees without significant osteoarthritis (OA) was acquired, 0.25-mm resolution. Menisci were evaluated and classified intact or torn. MR data were transferred to ImageJ program to segment tibial 3D volume of interest (VOI). Data was subdivided into meniscus-covered/meniscus-uncovered regions. Segmented VOI was classified into binary data, trabeculae/bone marrow. The trabecular bone data was used to measure MR biomarkers (apparent subchondral plate-connected bone density (adapted from spine MR), apparent trabecular bone volume fraction, apparent mean trabecular thickness, apparent connectivity density, and structure model index (SMI)). Mean value of parameters was analyzed for the effects of meniscal tear/tibial coverage. RESULTS: Nine torn menisci and 3 intact menisci were present. MR measures of bone varied significantly due to meniscal coverage/tear. Subchondral plate-connected bone density under covered meniscus regions increased from 10.9 to 23.5% with meniscal tear. Values increased in uncovered regions, 19.3% (intact) and 32.4% (torn). This reflects higher density when uncovered (p = 0.048) with meniscal tear (p = 0.007). Similar patterns were found for trabecular bone fraction (coverage p < 0.001, tear p = 0.047), trabecular thickness (coverage p = 0.03), connectivity density (coverage p = 0.002), and SMI (coverage p = 0.015). CONCLUSION: Quantitative trabecular bone evaluation emphasizes intrinsic structural differences between meniscus-covered/meniscus-uncovered tibias. Results offer insight into bone adaptation with meniscal tear and support the hypothesis that subchondral bone plate-connected bone density could be important in early subchondral bone adaptation.


Subject(s)
Knee Injuries , Meniscus , Tibial Meniscus Injuries , Humans , Magnetic Resonance Imaging , Menisci, Tibial/diagnostic imaging , Meniscus/diagnostic imaging , Tibia/diagnostic imaging , Tibial Meniscus Injuries/diagnostic imaging
11.
Skeletal Radiol ; 48(6): 931-937, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30357459

ABSTRACT

OBJECTIVE: To determine if radiographic medial tibiofemoral offset (MTFO) is associated with: (1) magnetic resonance imaging (MRI) pathology of cartilage, meniscus, and ligament; and (2) a distinct pattern of lateral cartilage degeneration on MRI. MATERIALS AND METHODS: Three hundred consecutive adult knee MRIs with anteroposterior (AP) radiographs were retrospectively reviewed, and 145 studies were included. MTFO was defined as a medial extension of the medial femoral condyle beyond the articular surface of the medial tibial plateau on weight-bearing AP radiographs. The patients were then divided into the MTFO (n = 61) or no-offset (n = 84) groups. On MRI data obtained on a 1.5-Tesla system, articular cartilage of the femoral condyle and tibial plateau were graded using a modified Outerbridge classification (36 sub-regions similar to whole-organ MRI Score (WORMS) system). In addition, MR pathology of the ACL, MCL, LCL, medial and lateral menisci, were determined. RESULTS: Significantly increased (ANOVA p < 0.007) MR grade of the ligaments, menisci, and cartilage in the MTFO group (ranging from 0.3 to 2.5) compared to the control group (0.2 to 1.1). Color maps of the cartilage grades suggested a marked difference in both severity of degeneration and regional variations between the groups. MTFO group exhibited focally increased cartilage grades in the central, non-weight regions of lateral compartment (region p = 0.07 to 0.12, interaction p = 0.05 to 0.1). CONCLUSIONS: MTFO is associated with overall degeneration of the knee and features a distinct lateral cartilage degeneration pattern, which may reflect non-physiologic contact of the cartilage between the lateral tibial eminence and lateral central femoral condyle.


Subject(s)
Cartilage Diseases/pathology , Cartilage, Articular/pathology , Femur/abnormalities , Knee Joint/pathology , Magnetic Resonance Imaging , Menisci, Tibial/pathology , Tibia/abnormalities , Cartilage Diseases/diagnostic imaging , Cartilage, Articular/diagnostic imaging , Female , Femur/diagnostic imaging , Humans , Knee Joint/diagnostic imaging , Male , Menisci, Tibial/diagnostic imaging , Middle Aged , Retrospective Studies , Tibia/diagnostic imaging
13.
AJR Am J Roentgenol ; 211(5): 1075-1082, 2018 11.
Article in English | MEDLINE | ID: mdl-30160979

ABSTRACT

OBJECTIVE: The bundled, crescent-shaped trabeculae within the calcaneal tuberosity-which we term and refer to here as the "calcaneal crescent"-may represent a structural adaption to the prevailing forces. Given Wolff law, we hypothesized that the calcaneal crescent would be more robust in patients with plantar fasciitis, a syndrome in part characterized by overload of the Achilles tendon-calcaneal crescent-plantar fascia system, than in patients without plantar fasciitis. MATERIALS AND METHODS: MR images of 37 patients (27 women and 10 men; mean age ± SD, 51 ± 13 years; mean body mass index [BMI, weight in kilograms divided by the square of height in meters], 26.8 ± 6.3) referred for workup of foot or ankle pain were retrospectively evaluated by two blinded readers in this study. Patients were assigned to two groups: group A, which was composed of 15 subjects without clinical signs or MRI findings of Achilles tendon-calcaneal crescent-plantar fascia system abnormalities, or group B, which was composed of 22 patients with findings of plantar fasciitis. The thickness and cross-sectional area (CSA) of the Achilles tendon, calcaneal crescent, and plantar fascia were measured on proton density (PD)-weighted MR images. The entire crescent volume was manually measured using OsiriX software on consecutive sagittal PD-weighted images. Additionally, contrast-to-noise ratio (CNR) as a surrogate marker for trabecular density and the mean thickness of the calcaneal crescent were determined on PD-weighted MR images. The groupwise difference in the morphologic measurements were evaluated using ANOVA with BMI as a covariate. Partial correlation was used to assess the relationships of measurements for the group with plantar fasciitis (group B). Intraclass correlation coefficient (ICC) statistics were performed. RESULTS: Patients with plantar fasciitis had a greater CSA and volume of the calcaneal crescent and had lower CNR (i.e., denser trabeculae) than those without Achilles tendon-calcaneal crescent-plantar fascia system abnormalities (CSA, 100.2 vs 73.7 mm2, p = 0.019; volume, 3.06 vs 1.99 cm3, p = 0.006; CNR, -28.40 vs -38.10, p = 0.009). Interreader agreement was excellent (ICC = 0.85-0.99). CONCLUSION: In patients with plantar fasciitis, the calcaneal crescent is enlarged compared with those without abnormalities of the Achilles tendon-calcaneal crescent-plantar fascia system. An enlarged and trabeculae-rich calcaneal crescent may potentially indicate that abnormally increased forces are being exerted onto the Achilles tendon-calcaneal crescent-plantar fascia system.


Subject(s)
Calcaneus/diagnostic imaging , Fasciitis, Plantar/diagnostic imaging , Magnetic Resonance Imaging/methods , Achilles Tendon/diagnostic imaging , Achilles Tendon/physiopathology , Adaptation, Physiological , Calcaneus/physiopathology , Fasciitis, Plantar/physiopathology , Female , Humans , Image Interpretation, Computer-Assisted , Male , Middle Aged , Retrospective Studies , Software
14.
Eur Spine J ; 27(4): 739-751, 2018 04.
Article in English | MEDLINE | ID: mdl-29460012

ABSTRACT

PURPOSE: To elucidate the effects of growth differentiation factor-6 (GDF6) on: (i) gene expression of inflammatory/pain-related molecules and structural integrity in the rabbit intervertebral disc (IVD) degeneration model, and (ii) sensory dysfunction and changes in pain-marker expression in dorsal nerve ganglia (DRGs) in the rat xenograft radiculopathy model. METHODS: Forty-six adolescent rabbits received anular-puncture in two non-consecutive lumbar IVDs. Four weeks later, phosphate-buffered saline (PBS) or GDF6 (1, 10 or 100 µg) was injected into the nucleus pulposus (NP) of punctured discs and followed for 4 weeks for gene expression analysis and 12 weeks for structural analyses. For pain assessment, eight rabbits were sacrificed at 4 weeks post-injection and NP tissues of injected discs were transplanted onto L5 DRGs of 16 nude rats to examine mechanical allodynia. The rat DRGs were analyzed immunohistochemically. RESULTS: In GDF6-treated rabbit NPs, gene expressions of interleukin-6, tumor necrosis factor-α, vascular endothelial growth factor, prostaglandin-endoperoxide synthase 2, and nerve growth factor were significantly lower than those in the PBS group. GDF6 injections resulted in partial restoration of disc height and improvement of MRI disc degeneration grades with statistical significance in rabbit structural analyses. Allodynia induced by xenograft transplantation of rabbit degenerated NPs onto rat DRGs was significantly reduced by GDF6 injection. Staining intensities for ionized calcium-binding adaptor molecule-1 and calcitonin gene-related peptide in rat DRGs of the GDF6 group were significantly lower than those of the PBS group. CONCLUSION: GDF6 injection may change the pathological status of degenerative discs and attenuate degenerated IVD-induced pain.


Subject(s)
Growth Differentiation Factor 6/pharmacology , Hyperalgesia/metabolism , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc/metabolism , Radiculopathy/metabolism , Animals , Awards and Prizes , Calcitonin Gene-Related Peptide/metabolism , Calcium-Binding Proteins/metabolism , Cytokines/metabolism , Disease Models, Animal , Female , Ganglia, Spinal/metabolism , Heterografts , Immunohistochemistry , Intervertebral Disc/pathology , Intervertebral Disc Degeneration/pathology , Magnetic Resonance Imaging , Microfilament Proteins/metabolism , Nerve Growth Factor/metabolism , Prostaglandin-Endoperoxide Synthases/metabolism , Punctures , Rabbits , Radiculopathy/pathology , Rats , Vascular Endothelial Growth Factor A/metabolism , X-Ray Microtomography
15.
AJR Am J Roentgenol ; 209(3): 511-524, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28570096

ABSTRACT

OBJECTIVE: The purposes of this article are to present a state-of-the-art routine protocol for MRI of the ankle, to provide problem-solving tools based on specific clinical indications, and to introduce principles for the implementation of ultrashort echo time MRI of the ankle, including morphologic and quantitative assessment. CONCLUSION: Ankle injury is common among both athletes and the general population, and MRI is the established noninvasive means of evaluation. The design of an ankle protocol depends on various factors. Higher magnetic field improves signal-to-noise ratio but increases metal artifact. Specialized imaging planes are useful but prolong acquisition times. MR neurography is useful, but metal reduction techniques are needed whenever a metal prosthesis is present. An ultrashort echo time sequence is a valuable tool for both structural and quantitative evaluation.


Subject(s)
Ankle Injuries/diagnostic imaging , Ankle Joint/diagnostic imaging , Athletic Injuries/diagnostic imaging , Joint Diseases/diagnostic imaging , Magnetic Resonance Imaging/methods , Contrast Media , Humans , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods
16.
Semin Musculoskelet Radiol ; 21(2): 45-62, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28355670

ABSTRACT

Magnetic resonance imaging (MRI) is widely used in the clinical setting as well as for research applications. Since its inception, technical development has broadly progressed as a response to challenges in both the clinical and research settings. Higher magnetic field strength and advances in hardware and software have revolutionized the diagnostic potential of MRI and moved well beyond diagnosis to characterization of tissue metabolism, biochemistry, disease pathogenesis, and material property, to name a few. This article focuses on state-of-the-art clinical and cutting-edge novel pulse sequences applied to knee MRI.


Subject(s)
Joint Diseases/diagnostic imaging , Knee Joint/diagnostic imaging , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Cartilage, Articular/diagnostic imaging , Humans , Meniscus/diagnostic imaging , Tendons/diagnostic imaging
17.
Radiology ; 280(1): 161-8, 2016 07.
Article in English | MEDLINE | ID: mdl-26829523

ABSTRACT

Purpose To determine the relationship between lamellar layer thickness on ultrashort echo time (UTE) magnetic resonance (MR) images and indentation stiffness of human menisci and to compare quantitative MR imaging values between two groups with normal and abnormally thick lamellar layers. Materials and Methods This was a HIPAA-compliant, institutional review board-approved study. Nine meniscal pieces were obtained from seven donors without gross meniscal pathologic results (mean age, 57.4 years ± 14.5 [standard deviation]). UTE MR imaging and T2, UTE T2*, and UTE T1ρ mapping were performed. The presence of abnormal lamellar layer thickening was determined and thicknesses were measured. Indentation testing was performed. Correlation between the thickness and indentation stiffness was assessed, and mean quantitative MR imaging values were compared between the groups. Results Thirteen normal lamellar layers had mean thickness of 232 µm ± 85 and indentation peak force of 1.37 g ± 0.87. Four abnormally thick lamellar layers showed mean thickness of 353.14 µm ± 98.36 and peak force 0.72 g ± 0.31. In most cases, normal thicknesses showed highly positive correlation with the indentation peak force (r = 0.493-0.912; P < .001 to .05). However, the thickness in two abnormal lamellar layers showed highly negative correlation (r = -0.90, P < .001; and r = -0.23, P = .042) and no significant correlation in the others. T2, UTE T2*, and UTE T1ρ values in abnormally thick lamellar layers were increased compared with values in normal lamellar layers, although only the UTE T2* value showed significant difference (P = .010). Conclusion Variation of lamellar layer thickness in normal human menisci was evident on two-dimensional UTE images. In normal lamellar layers, thickness is highly and positively correlated with surface indentation stiffness. UTE T2* values may be used to differentiate between normal and abnormally thickened lamellar layers. (©) RSNA, 2016.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Meniscus/anatomy & histology , Meniscus/pathology , Biomechanical Phenomena , Cadaver , Female , Humans , Male , Middle Aged
19.
Skeletal Radiol ; 45(9): 1249-56, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27241121

ABSTRACT

OBJECTIVE: To evaluate ultrashort time to echo (UTE) magnetic resonance (MR) morphology of the cartilaginous endplates (CEP) in cadaveric lumbar spines with bony vertebral endplate (VEP) lesions, to determine inter-reader agreement as well as associations between the CEP morphology and VEP lesions as well as other abnormalities. MATERIALS AND METHODS: MR imaging of cadaveric lumbar spines from 10 donors was performed at 3T using a UTE MR sequence. Two musculoskeletal radiologists identified the location of vertebral endplate lesions in consensus. The morphology of the CEP overlying the lesions and in the adjacent normal regions was assessed individually. A total of 55 vertebral lesions and 55 normal regions were assessed. The presence of osteophytosis, morphological changes of the anterior and posterior longitudinal ligament, and intervertebral disc signal and morphology was also assessed. Agreement between observers was determined using Cohen's kappa analysis, and association between CEP and vertebral endplate lesions was determined using the chi square test. RESULTS: Fifty-five vertebral endplate lesions were identified and the morphology of CEP evaluated by two readers was in substantial agreement with Cohen's kappa of 0.78. The presence of vertebral endplate abnormality was associated with the presence of osteophytes (39 out of 55 levels), altered morphology and signal of the anterior longitudinal ligament (23 out of 55 levels) and intervertebral discs (30 out of 55 levels). CONCLUSION: UTE MRI enables evaluation of the CEP with substantial inter-reader agreement. Abnormal changes of the CEP may facilitate formation of lesions of vertebral endplate over time and are associated with degenerative changes of the lumbar spine.


Subject(s)
Cartilage/diagnostic imaging , Intervertebral Disc Degeneration/diagnostic imaging , Intervertebral Disc/diagnostic imaging , Lumbar Vertebrae/diagnostic imaging , Magnetic Resonance Imaging/methods , Osteophyte/diagnostic imaging , Cadaver , Female , Humans , Male , Middle Aged , Reproducibility of Results , Subtraction Technique
20.
Skeletal Radiol ; 45(4): 447-54, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26691643

ABSTRACT

OBJECTIVE: To evaluate pathology of the triangular fibrocartilage complex (TFCC) using high-resolution morphologic magnetic resonance (MR) imaging, and compare with quantitative MR and biomechanical properties. MATERIALS AND METHODS: Five cadaveric wrists (22-70 years) were imaged at 3 T using morphologic (proton density weighted spin echo, PD FS, and 3D spoiled gradient echo, 3D SPGR) and quantitative MR sequences to determine T2 and T1rho properties. In eight geographic regions, morphology of TFC disc and laminae were evaluated for pathology and quantitative MR values. Samples were disarticulated and biomechanical indentation testing was performed on the distal surface of the TFC disc. RESULTS: On morphologic PD SE images, TFC disc pathology included degeneration and tears, while that of the laminae included degeneration, degeneration with superimposed tear, mucinous transformation, and globular calcification. Punctate calcifications were highly visible on 3D SPGR images and found only in pathologic regions. Disc pathology occurred more frequently in proximal regions of the disc than distal regions. Quantitative MR values were lowest in normal samples, and generally higher in pathologic regions. Biomechanical testing demonstrated an inverse relationship, with indentation modulus being high in normal regions with low MR values. The laminae studied were mostly pathologic, and additional normal samples are needed to discern quantitative changes. CONCLUSION: These results show technical feasibility of morphologic MR, quantitative MR, and biomechanical techniques to characterize pathology of the TFCC. Quantitative MRI may be a suitable surrogate marker of soft tissue mechanical properties, and a useful adjunct to conventional morphologic MR techniques.


Subject(s)
Magnetic Resonance Imaging/methods , Triangular Fibrocartilage/pathology , Adult , Aged , Aged, 80 and over , Biomechanical Phenomena , Cadaver , Humans , Imaging, Three-Dimensional/methods , Middle Aged , Triangular Fibrocartilage/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL