Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Eur Radiol ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811389

ABSTRACT

This is a summary of a consensus statement on the introduction of "Ultrasound microvasculomics" produced by The Chinese Artificial Intelligence Alliance for Thyroid and Breast Ultrasound. The evaluation of microvessels is a very important part for the assessment of diseases. Super-resolution ultrasound (SRUS) microvascular imaging surpasses traditional ultrasound imaging in the morphological and functional analysis of microcirculation. SRUS microvascular imaging relies on contrast microbubbles to gain sensitivity to microvessels and improves the spatial resolution of ultrasound blood flow imaging for a more detailed depiction of vascular structures and hemodynamics. This method has been applied in preclinical animal models and pilot clinical studies, involving areas including neurology, oncology, nephrology, and cardiology. However, the current quantitative parameters of SRUS images are not enough for precise evaluation of microvessels. Therefore, by employing omics methods, more quantification indicators can be obtained, enabling a more precise and personalized assessment of microvascular status. Ultrasound microvasculomics - a high-throughput extraction of image features from SRUS images - is one novel approach that holds great promise but needs further validation in both bench and clinical settings. CLINICAL RELEVANCE STATEMENT: Super-resolution Ultrasound (SRUS) blood flow imaging improves spatial resolution. Ultrasound microvasculomics is possible to acquire high-throughput information of features from SRUS images. It provides more precise and abundant micro-blood flow information in clinical medicine. KEY POINTS: This consensus statement reviews the development and application of super-resolution ultrasound (SRUS). The shortcomings of the current quantification indicators of SRUS and strengths of the omics methodology are addressed. "Ultrasound microvasculomics" is introduced for a high-throughput extraction of image features from SRUS images.

2.
J Immunol ; 209(10): 2042-2053, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36426942

ABSTRACT

The BCR consists of surface-bound Ig and a heterodimeric signaling unit comprised of CD79A and CD79B. Upon cognate Ag recognition, the receptor initiates important signals for B cell development and function. The receptor also conveys Ag-independent survival signals termed tonic signaling. Although the requirement of a CD79A/CD79B heterodimer for BCR complex assembly and surface expression is well established based on mice models, few studies have investigated this in human mature B cells. In this study, we found that human tonsillar B cells with high surface expression of IgM or IgG had potentiated BCR signaling compared with BCRlow cells, and high IgM expression in germinal center B cells was associated with reduced apoptosis. We explored the mechanism for IgM surface expression by CRISPR/Cas9-induced deletion of CD79A or CD79B in four B lymphoma cell lines. Deletion of either CD79 protein caused loss of surface IgM in all cell lines and reduced fitness in three. From two cell lines, we generated stable CD79A or CD79B knockout clones and demonstrated that loss of CD79A or CD79B caused a block in N-glycan maturation and accumulation of immature proteins, compatible with retention of BCR components in the endoplasmic reticulum. Rescue experiments with CD79B wild-type restored surface expression of CD79A and IgM with mature glycosylation, whereas a naturally occurring CD79B G137S mutant disrupting CD79A/CD79B heterodimerization did not. Our study highlights that CD79A and CD79B are required for surface IgM expression in human B cells and illuminates the importance of the IgM expression level for signaling and fitness.


Subject(s)
B-Lymphocytes , Receptors, Antigen, B-Cell , Humans , Animals , Mice , Receptors, Antigen, B-Cell/genetics , Cell Count , Germinal Center , Immunoglobulin M , CD79 Antigens/genetics
3.
Radiology ; 307(5): e221157, 2023 06.
Article in English | MEDLINE | ID: mdl-37338356

ABSTRACT

Background Artificial intelligence (AI) models have improved US assessment of thyroid nodules; however, the lack of generalizability limits the application of these models. Purpose To develop AI models for segmentation and classification of thyroid nodules in US using diverse data sets from nationwide hospitals and multiple vendors, and to measure the impact of the AI models on diagnostic performance. Materials and Methods This retrospective study included consecutive patients with pathologically confirmed thyroid nodules who underwent US using equipment from 12 vendors at 208 hospitals across China from November 2017 to January 2019. The detection, segmentation, and classification models were developed based on the subset or complete set of images. Model performance was evaluated by precision and recall, Dice coefficient, and area under the receiver operating characteristic curve (AUC) analyses. Three scenarios (diagnosis without AI assistance, with freestyle AI assistance, and with rule-based AI assistance) were compared with three senior and three junior radiologists to optimize incorporation of AI into clinical practice. Results A total of 10 023 patients (median age, 46 years [IQR 37-55 years]; 7669 female) were included. The detection, segmentation, and classification models had an average precision, Dice coefficient, and AUC of 0.98 (95% CI: 0.96, 0.99), 0.86 (95% CI: 0.86, 0.87), and 0.90 (95% CI: 0.88, 0.92), respectively. The segmentation model trained on the nationwide data and classification model trained on the mixed vendor data exhibited the best performance, with a Dice coefficient of 0.91 (95% CI: 0.90, 0.91) and AUC of 0.98 (95% CI: 0.97, 1.00), respectively. The AI model outperformed all senior and junior radiologists (P < .05 for all comparisons), and the diagnostic accuracies of all radiologists were improved (P < .05 for all comparisons) with rule-based AI assistance. Conclusion Thyroid US AI models developed from diverse data sets had high diagnostic performance among the Chinese population. Rule-based AI assistance improved the performance of radiologists in thyroid cancer diagnosis. © RSNA, 2023 Supplemental material is available for this article.


Subject(s)
Thyroid Neoplasms , Thyroid Nodule , Humans , Female , Middle Aged , Artificial Intelligence , Thyroid Nodule/diagnostic imaging , Retrospective Studies
4.
RNA Biol ; 16(1): 42-53, 2019 01.
Article in English | MEDLINE | ID: mdl-30526271

ABSTRACT

It is obvious that the majority of cellular transcripts are long noncoding RNAs (lncRNAs). Although studies suggested that lncRNAs participate in many biological processes through diverse mechanisms, however, little is known about their effects on epidermal mechanoreceptors. Here, we identified one novel Drosophila lncRNA, Scutellar Macrochaetes Regulatory Gene (SMRG), which regulates scutellar macrochaetes that act as mechanoreceptors by antagonizing the proneural gene scute (sc), through the repressor Enhancer-of-split mß (E(spl)mß). SMRG deficiency induced supernumerary scutellar macrochaetes and simultaneously a high sc RNA level in the adult thorax. Genetically, sc overexpression enhanced this supernumerary phenotype, while heterozygous sc mutant rescued this phenotype, both of which were mediated by E(spl)mß. At the molecular level, SMRG recruited E(spl)mß to the sc promoter region, which in turn suppressed sc expression. Our work presents a novel function of lncRNA and offers insights into the molecular mechanism underlying mechanoreceptor development.


Subject(s)
Drosophila Proteins/genetics , Drosophila/genetics , RNA, Long Noncoding/genetics , Animals , Base Sequence , Gene Expression Regulation , Organ Specificity , Promoter Regions, Genetic , RNA, Long Noncoding/chemistry
5.
Nucleic Acids Res ; 40(22): 11714-27, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23074190

ABSTRACT

Long non-coding RNAs (lncRNAs) that have no protein-coding capacity make up a large proportion of the transcriptome of various species. Many lncRNAs are expressed within the animal central nervous system in spatial- and temporal-specific patterns, indicating that lncRNAs play important roles in cellular processes, neural development, and even in cognitive and behavioral processes. However, relatively little is known about their in vivo functions and underlying molecular mechanisms in the nervous system. Here, we report a neural-specific Drosophila lncRNA, CASK regulatory gene (CRG), which participates in locomotor activity and climbing ability by positively regulating its neighboring gene CASK (Ca(2+)/calmodulin-dependent protein kinase). CRG deficiency led to reduced locomotor activity and a defective climbing ability-phenotypes that are often seen in CASK mutant. CRG mutant also showed reduced CASK expression level while CASK over-expression could rescue the CRG mutant phenotypes in reciprocal. At the molecular level, CRG was required for the recruitment of RNA polymerase II to the CASK promoter regions, which in turn enhanced CASK expression. Our work has revealed new functional roles of lncRNAs and has provided insights to explore the pathogenesis of neurological diseases associated with movement disorders.


Subject(s)
Drosophila melanogaster/genetics , Locomotion/genetics , RNA, Long Noncoding/physiology , Animals , Central Nervous System/embryology , Central Nervous System/growth & development , Central Nervous System/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Drosophila melanogaster/physiology , Gene Expression Regulation , Guanylate Kinases/genetics , Guanylate Kinases/metabolism , Promoter Regions, Genetic , RNA Polymerase II/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
6.
Insect Sci ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38480526

ABSTRACT

Apparently, the genomes of many organisms are pervasively transcribed, and long noncoding RNAs (lncRNAs) make up the majority of cellular transcripts. LncRNAs have been reported to play important roles in many biological processes; however, their effects on locomotion are poorly understood. Here, we presented a novel lncRNA, Locomotion Regulatory Gene (LRG), which participates in locomotion by sequestering Synaptotagmin 1 (SYT1). LRG deficiency resulted in higher locomotion speed which could be rescued by pan-neuronal overexpression but not by limited ellipsoid body, motoneuron or muscle-expression of LRG. At the molecular level, the synaptic vesicles (SVs) release and movement-related SYT1 protein was recognized as LRG-interacting protein candidate. Furthermore, LRG had no effects on SYT1 expression. Genetically, the behavioral defects in LRG mutant could be rescued by pan-neuronal knock-down of Syt1. Taken together, all the results suggested LRG exerts regulatory effects on locomotion via sequestering SYT1 thereby blocking its function without affecting its expression. Our work displays a new function of lncRNA and provides insights for revealing the pathogenesis of neurological diseases with motor disorders.

7.
Ultrasound Med Biol ; 50(8): 1224-1231, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38796340

ABSTRACT

OBJECTIVE: The main aim of this study was to determine whether the use of contrast-enhanced ultrasound (CEUS) could improve the categorization of suspicious breast lesions based on the Breast Imaging Reporting and Data System (BI-RADS), thereby reducing the number of benign breast lesions referred for biopsy. METHODS: This prospective study, conducted between January 2017 and December 2018, enrolled consenting patients from eight teaching hospitals in China, who had been diagnosed with solid breast lesions classified as BI-RADS 4 using conventional ultrasound. CEUS was performed within 1 wk of diagnosis for reclassification of breast lesions. Histopathological results obtained from core needle biopsies or surgical excision samples served as the reference standard. The simulated biopsy rate and cancer-to-biopsy yield were used to compare the accuracy of CEUS and conventional ultrasound (US). RESULTS: Among the 1490 lesions diagnosed as BI-RADS 4 with conventional ultrasound, 486 malignant and 1004 benign lesions were confirmed based on histology. Following CEUS, 2, 395, and 211 lesions were reclassified as CEUS-based BI-RADS 2, 3, and 5, respectively, while 882 (59%) remained as BI-RADS 4. The actual cancer-to-biopsy yield based on US was 32.6%, which increased to 43.4% when CEUS-based BI-RADS 4A was used as the cut-off point to recommend biopsy. The simulated biopsy rate decreased to 73.4%. Overall, in this preselected BI-RADS 4 population, only 2.5% (12/486) of malignant lesions would have been miscategorized as BI-RADS 3 using CEUS-based reclassification. The diagnostic accuracy, sensitivity, and specificity of contrast-enhanced ultrasound reclassification were 57.65%, 97.53%, and 38.35%, respectively. CONCLUSION: Our collective findings indicate that CEUS is a valuable tool in further triage of BI-RADS category 4 lesions and facilitates a reduction in the number of biopsies while increasing the cancer-to-biopsy yield.


Subject(s)
Breast Neoplasms , Breast , Contrast Media , Ultrasonography, Mammary , Humans , Female , Prospective Studies , Ultrasonography, Mammary/methods , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Middle Aged , Adult , Breast/diagnostic imaging , Breast/pathology , Aged , Image Enhancement/methods , Young Adult , Reproducibility of Results , China
8.
Blood Cancer J ; 14(1): 147, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39191762

ABSTRACT

Follicular lymphoma (FL) is the most common indolent type of B-cell non-Hodgkin lymphoma. Advances in treatment have improved overall survival, but early relapse or transformation to aggressive disease is associated with inferior outcome. To identify early genetic events and track tumor clonal evolution, we performed multi-omics analysis of 94 longitudinal biopsies from 44 FL patients; 22 with transformation (tFL) and 22 with relapse without transformation (nFL). Deep whole-exome sequencing confirmed recurrent mutations in genes encoding epigenetic regulators (CREBBP, KMT2D, EZH2, EP300), with similar mutational landscape in nFL and tFL patients. Calculation of genomic distances between longitudinal samples revealed complex evolutionary patterns in both subgroups. CREBBP and KMT2D mutations were identified as genetic events that occur early in the disease course, and cases with CREBBP KAT domain mutations had low risk of transformation. Gains in chromosomes 12 and 18 (TCF4), and loss in 6q were identified as early and stable copy number alterations. Identification of such early and stable genetic events may provide opportunities for early disease detection and disease monitoring. Integrative analysis revealed that tumors with EZH2 mutations exhibited reduced gene expression of numerous histone genes, including histone linker genes. This might contribute to the epigenetic dysregulation in FL.


Subject(s)
Genomics , Lymphoma, Follicular , Mutation , Humans , Lymphoma, Follicular/genetics , Lymphoma, Follicular/pathology , Female , Male , Middle Aged , Aged , Genomics/methods , Adult , Exome Sequencing , DNA Copy Number Variations , CREB-Binding Protein/genetics , Longitudinal Studies , Aged, 80 and over , Multiomics
9.
Acad Radiol ; 31(9): 3499-3510, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38582684

ABSTRACT

RATIONALE AND OBJECTIVES: To explore and validate the clinical value of ultrasound (US) viscosity imaging in differentiating breast lesions by combining with BI-RADS, and then comparing the diagnostic performances with BI-RADS alone. MATERIALS AND METHODS: This multicenter, prospective study enrolled participants with breast lesions from June 2021 to November 2022. A development cohort (DC) and validation cohort (VC) were established. Using histological results as reference standard, the viscosity-related parameter with the highest area under the receiver operating curve (AUC) was selected as the optimal one. Then the original BI-RADS would upgrade or not based on the value of this parameter. Finally, the results were validated in the VC and total cohorts. In the DC, VC and total cohorts, all breast lesions were divided into the large lesion, small lesion and overall groups respectively. RESULTS: A total of 639 participants (mean age, 46 years ± 14) with 639 breast lesions (372 benign and 267 malignant lesions) were finally enrolled in this study including 392 participants in the DC and 247 in the VC. In the DC, the optimal viscosity-related parameter in differentiating breast lesions was calculated to be A'-S2-Vmax, with the AUC of 0.88 (95% CI: 0.84, 0.91). Using > 9.97 Pa.s as the cutoff value, the BI-RADS was then modified. The AUC of modified BI-RADS significantly increased from 0.85 (95% CI: 0.81, 0.88) to 0.91 (95% CI: 0.87, 0.93), 0.85 (95% CI: 0.80, 0.89) to 0.90 (95% CI: 0.85, 0.93) and 0.85 (95% CI: 0.82, 0.87) to 0.90 (95% CI: 0.88, 0.92) in the DC, VC and total cohorts respectively (P < .05 for all). CONCLUSION: The quantitative viscous parameters evaluated by US viscosity imaging contribute to breast cancer diagnosis when combined with BI-RADS.


Subject(s)
Breast Neoplasms , Ultrasonography, Mammary , Humans , Female , Prospective Studies , Middle Aged , Breast Neoplasms/diagnostic imaging , Ultrasonography, Mammary/methods , Adult , Viscosity , Diagnosis, Differential , Sensitivity and Specificity , Breast/diagnostic imaging , Aged , Reproducibility of Results
10.
Mol Cell Proteomics ; 10(10): M111.009241, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21778410

ABSTRACT

The nucleolus is a nuclear organelle that coordinates rRNA transcription and ribosome subunit biogenesis. Recent proteomic analyses have shown that the nucleolus contains proteins involved in cell cycle control, DNA processing and DNA damage response and repair, in addition to the many proteins connected with ribosome subunit production. Here we study the dynamics of nucleolar protein responses in cells exposed to stress and DNA damage caused by ionizing and ultraviolet (UV) radiation in diploid human fibroblasts. We show using a combination of imaging and quantitative proteomics methods that nucleolar substructure and the nucleolar proteome undergo selective reorganization in response to UV damage. The proteomic responses to UV include alterations of functional protein complexes such as the SSU processome and exosome, and paraspeckle proteins, involving both decreases and increases in steady state protein ratios, respectively. Several nonhomologous end-joining proteins (NHEJ), such as Ku70/80, display similar fast responses to UV. In contrast, nucleolar proteomic responses to IR are both temporally and spatially distinct from those caused by UV, and more limited in terms of magnitude. With the exception of the NHEJ and paraspeckle proteins, where IR induces rapid and transient changes within 15 min of the damage, IR does not alter the ratios of most other functional nucleolar protein complexes. The rapid transient decrease of NHEJ proteins in the nucleolus indicates that it may reflect a response to DNA damage. Our results underline that the nucleolus is a specific stress response organelle that responds to different damage and stress agents in a unique, damage-specific manner.


Subject(s)
Cell Nucleolus/metabolism , DNA Damage , Nuclear Proteins/analysis , Nuclear Proteins/metabolism , Proteome/analysis , Antigens, Nuclear/analysis , Antigens, Nuclear/metabolism , Cell Nucleolus/radiation effects , DNA-Binding Proteins/analysis , DNA-Binding Proteins/metabolism , Exosomes/metabolism , Fibroblasts/metabolism , Fibroblasts/radiation effects , Humans , Isotope Labeling , Ku Autoantigen , Microscopy, Electron, Transmission , Nuclear Proteins/genetics , Proteome/genetics , Proteome/metabolism , RNA-Binding Proteins/analysis , RNA-Binding Proteins/metabolism , Radiation, Ionizing , Stress, Physiological , Transcription, Genetic , Ultraviolet Rays
11.
Proteomics ; 12(19-20): 3044-8, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22890538

ABSTRACT

Efficient extraction and accurate quantification of nucleolar macromolecules are critical for in vitro analysis, especially for studying RNA, DNA, and protein dynamics under identical conditions. There is presently no single method that efficiently and simultaneously isolates these three macromolecular constituents from purified nucleoli. We have developed an optimized method, which without evident loss, extracts, and solubilizes protein recovered from a single sample following TRIzol isolation of RNA and DNA. The solubilized protein can be accurately quantified by protein bicinchoninic acid assay and assessed by polyacrylamide gel electrophoresis. We have successfully applied this approach to extract and quantify all three nucleolar components, and to study nucleolar protein responses after actinomycin D treatment.


Subject(s)
Cell Nucleolus/chemistry , DNA/isolation & purification , Nuclear Proteins/isolation & purification , Proteomics/methods , RNA, Nuclear/isolation & purification , Cell Nucleolus/metabolism , DNA/chemistry , Guanidines/chemistry , HeLa Cells , Humans , Nuclear Proteins/analysis , Nuclear Proteins/chemistry , Phenols/chemistry , Quinolines/chemistry , RNA, Nuclear/chemistry , Subcellular Fractions/chemistry
12.
Cancers (Basel) ; 14(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36139599

ABSTRACT

We present a Human Artificial Intelligence Hybrid (HAIbrid) integrating framework that reweights Thyroid Imaging Reporting and Data System (TIRADS) features and the malignancy score predicted by a convolutional neural network (CNN) for nodule malignancy stratification and diagnosis. We defined extra ultrasonographical features from color Doppler images to explore malignancy-relevant features. We proposed Gated Attentional Factorization Machine (GAFM) to identify second-order interacting features trained via a 10 fold distribution-balanced stratified cross-validation scheme on ultrasound images of 3002 nodules all finally characterized by postoperative pathology (1270 malignant ones), retrospectively collected from 131 hospitals. Our GAFM-HAIbrid model demonstrated significant improvements in Area Under the Curve (AUC) value (p-value < 10−5), reaching about 0.92 over the standalone CNN (~0.87) and senior radiologists (~0.86), and identified a second-order vascularity localization and morphological pattern which was overlooked if only first-order features were considered. We validated the advantages of the integration framework on an already-trained commercial CNN system and our findings using an extra set of ultrasound images of 500 nodules. Our HAIbrid framework allows natural integration to clinical workflow for thyroid nodule malignancy risk stratification and diagnosis, and the proposed GAFM-HAIbrid model may help identify novel diagnosis-relevant second-order features beyond ultrasonography.

13.
Sci Rep ; 11(1): 6317, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33737576

ABSTRACT

Chemo-immunotherapy has improved survival in B-cell lymphoma patients, but refractory/relapsed diseases still represent a major challenge, urging for development of new therapeutics. Karonudib (TH1579) was developed to inhibit MTH1, an enzyme preventing oxidized dNTP-incorporation in DNA. MTH1 is highly upregulated in tumor biopsies from patients with diffuse large B-cell lymphoma (DLBCL) and Burkitt lymphoma, hence confirming a rationale for targeting MTH1. Here, we tested the efficacy of karonudib in vitro and in preclinical B-cell lymphoma models. Using a range of B-cell lymphoma cell lines, karonudib strongly reduced viability at concentrations well tolerated by activated normal B cells. In B-cell lymphoma cells, karonudib increased incorporation of 8-oxo-dGTP into DNA, and prominently induced prometaphase arrest and apoptosis due to failure in spindle assembly. MTH1 knockout cell lines were less sensitive to karonudib-induced apoptosis, but were displaying cell cycle arrest phenotype similar to the wild type cells, indicating a dual inhibitory role of the drug. Karonudib was highly potent as single agent in two different lymphoma xenograft models, including an ABC DLBCL patient derived xenograft, leading to prolonged survival and fully controlled tumor growth. Together, our preclinical findings provide a rationale for further clinical testing of karonudib in B-cell lymphoma.


Subject(s)
Burkitt Lymphoma/drug therapy , DNA Repair Enzymes/genetics , Lymphoma, B-Cell/drug therapy , Phosphoric Monoester Hydrolases/genetics , Pyrimidines/pharmacology , Animals , Apoptosis/drug effects , Burkitt Lymphoma/genetics , Burkitt Lymphoma/pathology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , DNA/biosynthesis , DNA Repair Enzymes/antagonists & inhibitors , Deoxyguanine Nucleotides/antagonists & inhibitors , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/pathology , Mice , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Xenograft Model Antitumor Assays
14.
Endocrine ; 72(1): 157-170, 2021 04.
Article in English | MEDLINE | ID: mdl-32852733

ABSTRACT

PURPOSE: To establish a practical and simplified Chinese thyroid imaging reporting and data system (C-TIRADS) based on the Chinese patient database. METHODS: A total of 2141 thyroid nodules that were neither cystic nor spongy were used in the current study. These specimens were derived from 2141 patients in 131 alliance hospitals of the Chinese Artificial Intelligence Alliance for Thyroid and Breast Ultrasound. The ultrasound features, including location, orientation, margin, halo, composition, echogenicity, echotexture, echogenic foci and posterior features were assessed. Univariate and multivariate analyses were performed to investigate the association between ultrasound features and malignancy. The regression equation, the weighting, and the counting methods were used to determine the malignant risk of the thyroid nodules. The areas under the receiver operating characteristic curve (Az values) were calculated. RESULTS: Of the 2141 thyroid nodules, 1572 were benign, 565 were malignant, and 4 were borderline. Vertical orientation, ill-defined, or irregular margin (including extrathyroidal extension), microcalcifications, solid, and markedly hypoechoic were positively associated with malignancy, while comet-tail artifacts were negatively associated with malignancy. The logistic regression equation yielded the highest Az value of 0.913, which was significantly higher than that obtained using the weighting method (0.893) and the counting method (0.890); however, no significant difference was found between the latter two. The C-TIRADS, based on the counting method, was designed following the principle of balancing the diagnostic performance and sensitivity of the risk stratification with the ease of use. CONCLUSIONS: A relatively simple C-TIRADS was established using the counting value of positive and negative ultrasound features.


Subject(s)
Thyroid Neoplasms , Thyroid Nodule , Artificial Intelligence , China , Humans , Retrospective Studies , Risk Assessment , Thyroid Neoplasms/diagnostic imaging , Thyroid Nodule/diagnostic imaging , Ultrasonography
15.
Nucleic Acids Res ; 36(Database issue): D170-2, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18000000

ABSTRACT

The NONCODE database is an integrated knowledge database designed for the analysis of non-coding RNAs (ncRNAs). Since NONCODE was first released 3 years ago, the number of known ncRNAs has grown rapidly, and there is growing recognition that ncRNAs play important regulatory roles in most organisms. In the updated version of NONCODE (NONCODE v2.0), the number of collected ncRNAs has reached 206 226, including a wide range of microRNAs, Piwi-interacting RNAs and mRNA-like ncRNAs. The improvements brought to the database include not only new and updated ncRNA data sets, but also an incorporation of BLAST alignment search service and access through our custom UCSC Genome Browser. NONCODE can be found under http://www.noncode.org or http://noncode.bioinfo.org.cn.


Subject(s)
Databases, Nucleic Acid , RNA, Untranslated/chemistry , Animals , Humans , Internet , RNA, Untranslated/classification , RNA, Untranslated/genetics , User-Computer Interface
16.
Methods Mol Biol ; 2115: 445-454, 2020.
Article in English | MEDLINE | ID: mdl-32006416

ABSTRACT

Genome editing in eukaryotes has greatly improved through the application of targeted editing tools. The development of the CRISPR/Cas9 technology has facilitated genome editing in mammalian cells. However, efficient delivery of CRISPR components into cells growing in suspension remains a challenge. Here, we present a strategy for sequential delivery of the two essential components, Cas9 and sgRNA, into B-lymphoid cell lines. Stable Cas9 expression is obtained by retroviral transduction, before sgRNA is transiently delivered into the Cas9+ cells. This method improves the on-target efficiency of genome editing and, through the transient presence of sgRNA, reduces the potential off-target sites. The current method can be easily applied to other cell types that are difficult to edit with CRISPR/Cas9.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , Lymphoma, B-Cell/genetics , B-Lymphocytes/metabolism , CRISPR-Associated Protein 9/genetics , Cell Line, Tumor , Clustered Regularly Interspaced Short Palindromic Repeats , Electroporation/methods , Gene Transfer Techniques , Humans , Lymphoma, B-Cell/therapy , RNA, Guide, Kinetoplastida/genetics , Transduction, Genetic/methods
17.
Oncogene ; 39(40): 6300-6312, 2020 10.
Article in English | MEDLINE | ID: mdl-32843722

ABSTRACT

Tamoxifen is the most prescribed selective estrogen receptor (ER) modulator in patients with ER-positive breast cancers. Tamoxifen requires the transcription factor paired box 2 protein (PAX2) to repress the transcription of ERBB2/HER2. Now, we identified that PAX2 inhibits cell growth of ER+/HER2- tumor cells in a dose-dependent manner. Moreover, we have identified that cell growth inhibition can be achieved by expressing moderate levels of PAX2 in combination with tamoxifen treatment. Global run-on sequencing of cells overexpressing PAX2, when coupled with PAX2 ChIP-seq, identified common targets regulated by both PAX2 and tamoxifen. The data revealed that PAX2 can inhibit estrogen-induced gene transcription and this effect is enhanced by tamoxifen, suggesting that they converge on repression of the same targets. Moreover, PAX2 and tamoxifen have an additive effect and both induce coding genes and enhancer RNAs (eRNAs). PAX2-tamoxifen upregulated genes are also enriched with PAX2 eRNAs. The enrichment of eRNAs is associated with the highest expression of genes that positivity regulate apoptotic processes. In luminal tumors, the expression of a subset of these proapoptotic genes predicts good outcome and their expression are significantly reduced in tumors of patients with relapse to tamoxifen treatment. Mechanistically, PAX2 and tamoxifen coexert an antitumoral effect by maintaining high levels of transcription of tumor suppressors that promote cell death. The apoptotic effect is mediated in large part by the gene interferon regulatory factor 1. Altogether, we conclude that PAX2 contributes to better clinical outcome in tamoxifen treated ER-positive breast cancer patients by repressing estrogen signaling and inducing cell death related pathways.


Subject(s)
Antineoplastic Agents, Hormonal/pharmacology , Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics , Interferon Regulatory Factor-1/genetics , Neoplasm Recurrence, Local/genetics , PAX2 Transcription Factor/metabolism , Antineoplastic Agents, Hormonal/therapeutic use , Apoptosis/drug effects , Apoptosis/genetics , Breast/pathology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Chromatin Immunoprecipitation Sequencing , Estrogens/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Interferon Regulatory Factor-1/metabolism , Prognosis , Promoter Regions, Genetic/genetics , Receptor, ErbB-2/metabolism , Receptors, Estrogen/antagonists & inhibitors , Receptors, Estrogen/metabolism , Signal Transduction/drug effects , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Transcriptional Activation/drug effects , Up-Regulation
18.
Ann Transl Med ; 7(22): 647, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31930048

ABSTRACT

BACKGROUND: We aimed to investigate the influence of patient and lesion characteristics on our diagnostic model for contrast-enhanced ultrasound (CEUS) of the breast, comparing its accuracy with that of histopathology. METHODS: Conducting a study with eight medical centers, we compared 1,023 breast lesions categorized as BI-RADS 4 or 5 with the score from our newly-established CEUS-based diagnostic model, comparing the results with pathological outcomes. Univariate and multivariate logistic regression analyses were conducted to determine the influence of clinicopathological characteristics on the performance of this CEUS model. RESULTS: Logistic regression analysis showed that patients' age, maximum lesion diameter, and distance from the lesion's deep edge to the pectoralis major were significant independent influencing factors. The model's diagnostic accuracy was greater for patients >35 y (P=0.005), for maximum lesion diameter >20 mm, and for distance from the lesion's deep edge to the pectoralis major ≤3.05 mm. There was no significant difference in accuracy between lesions with maximum lesion diameter 10-20 and <10 mm (P=0.393). CONCLUSIONS: The diagnostic performance of the proposed CEUS model for breast lesions is influenced by patients' age, maximum lesion diameter, and distance from the lesion's deep edge to the pectoralis major. Consideration of influencing factors is required to optimize clinical use of the CEUS model.

19.
Cancer Manag Res ; 11: 2163-2170, 2019.
Article in English | MEDLINE | ID: mdl-30936748

ABSTRACT

PURPOSE: To evaluate a classification model of contrast-enhanced ultrasound (CEUS) and examine the characteristics of patients with false-negative diagnosis. PATIENTS AND METHODS: A retrospective secondary analysis of a multicenter trial of CEUS for breast cancer diagnosis (from August 2015 to April 2017) was undertaken. Patients (n=1,023) with Breast Imaging Reporting and Data System 4-5 lesions on B-mode ultrasound underwent CEUS. Pathological diagnoses were available from surgical or biopsy specimens for correlation. Lesion maximum diameter (LMD), distance to the papilla (DtP), distance from the superficial edge of the lesion to the skin (DtS), distance from the deep edge of the lesion to the pectoralis muscle (DtPM), and body mass index (BMI) were evaluated. RESULTS: Median age and BMI were 48.0 and 41.2 years and 23.2 and 22.4 kg/m2 for patients with malignant and benign lesions, respectively. Overall sensitivity, specificity, and accuracy of CEUS for malignancy were 89.4%, 65.3%, and 75.8%, respectively. The patients with true-positive and false-negative diagnosis (ie, with malignant lesion) were older than those with false-positive and true-negative diagnosis (ie, with benign lesion). Patients with true-positive and false-positive diagnoses had higher BMI than patients with true-negative and false-negative diagnoses (P=0.004). Patients with true-positive and false-negative diagnoses had larger LMD and DtP, as well as smaller DtS and DtPM. CONCLUSION: Older age, higher BMI, larger LMD and DtP, and smaller DtS and DtPM were associated with malignant lesions on CEUS. Patients with these characteristics should undergo further imaging.

20.
Cancer Immunol Res ; 7(3): 355-362, 2019 03.
Article in English | MEDLINE | ID: mdl-30659053

ABSTRACT

Checkpoint blockade can reverse T-cell exhaustion and promote antitumor responses. Although blocking the PD-1 pathway has been successful in Hodgkin lymphoma, response rates have been modest in B-cell non-Hodgkin lymphoma (NHL). Coblockade of checkpoint receptors may therefore be necessary to optimize antitumor T-cell responses. Here, characterization of coinhibitory receptor expression in intratumoral T cells from different NHL types identified TIGIT and PD-1 as frequently expressed coinhibitory receptors. Tumors from NHL patients were enriched in CD8+ and CD4+ T effector memory cells that displayed high coexpression of TIGIT and PD-1, and coexpression of these checkpoint receptors identified T cells with reduced production of IFNγ, TNFα, and IL2. The suppressed cytokine production could be improved upon in vitro culture in the absence of ligands. Whereas PD-L1 was expressed by macrophages, the TIGIT ligands CD155 and CD112 were expressed by lymphoma cells in 39% and 50% of DLBCL cases and in some mantle cell lymphoma cases, as well as by endothelium and follicular dendritic cells in all NHLs investigated. Collectively, our results show that TIGIT and PD-1 mark dysfunctional T cells and suggest that TIGIT and PD-1 coblockade should be further explored to elicit potent antitumor responses in patients with NHL.


Subject(s)
Lymphoma, Non-Hodgkin/pathology , Programmed Cell Death 1 Receptor/metabolism , Receptors, Immunologic/metabolism , T-Lymphocyte Subsets/metabolism , Adult , Aged , Aged, 80 and over , Cell Line, Tumor , Cytokines/metabolism , Female , Humans , Immunologic Memory , Ligands , Lymphoma, Non-Hodgkin/metabolism , Middle Aged , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL