Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Eur J Neurosci ; 49(8): 990-1004, 2019 04.
Article in English | MEDLINE | ID: mdl-29804304

ABSTRACT

Ray Guillery was a neuroscientist known primarily for his ground-breaking studies on the development of the visual pathways and subsequently on the nature of thalamocortical processing loops. The legacy of his work, however, extends well beyond the visual system. Thanks to Ray Guillery's pioneering anatomical studies, the ferret has become a widely used animal model for investigating the development and plasticity of sensory processing. This includes our own work on the auditory system, where experiments in ferrets have revealed the role of sensory experience during development in shaping the neural circuits responsible for sound localization, as well as the capacity of the mature brain to adapt to changes in inputs resulting from hearing loss. Our research has also built on Ray Guillery's ideas about the possible functions of the massive descending projections that link sensory areas of the cerebral cortex to the thalamus and other subcortical targets, by demonstrating a role for corticothalamic feedback in the perception of complex sounds and for corticollicular projection neurons in learning to accommodate altered auditory spatial cues. Finally, his insights into the organization and functions of transthalamic corticocortical connections have inspired a raft of research, including by our own laboratory, which has attempted to identify how information flows through the thalamus.


Subject(s)
Auditory Cortex/physiology , Auditory Perception/physiology , Neuronal Plasticity , Thalamus/physiology , Animals , Auditory Cortex/growth & development , Auditory Pathways/growth & development , Auditory Pathways/physiology , Ferrets , History, 20th Century , History, 21st Century , Neurosciences/history , Sound Localization/physiology , Thalamus/growth & development
2.
J Neurosci ; 37(25): 6149-6161, 2017 06 21.
Article in English | MEDLINE | ID: mdl-28559384

ABSTRACT

Feedback signals from the primary auditory cortex (A1) can shape the receptive field properties of neurons in the ventral division of the medial geniculate body (MGBv). However, the behavioral significance of corticothalamic modulation is unknown. The aim of this study was to elucidate the role of this descending pathway in the perception of complex sounds. We tested the ability of adult female ferrets to detect the presence of a mistuned harmonic in a complex tone using a positive conditioned go/no-go behavioral paradigm before and after the input from layer VI in A1 to MGBv was bilaterally and selectively eliminated using chromophore-targeted laser photolysis. MGBv neurons were identified by their short latencies and sharp tuning curves. They responded robustly to harmonic complex tones and exhibited an increase in firing rate and temporal pattern changes when one frequency component in the complex tone was mistuned. Injections of fluorescent microbeads conjugated with a light-sensitive chromophore were made in MGBv, and, following retrograde transport to the cortical cell bodies, apoptosis was induced by infrared laser illumination of A1. This resulted in a selective loss of ∼60% of layer VI A1-MGBv neurons. After the lesion, mistuning detection was impaired, as indicated by decreased d' values, a shift of the psychometric curves toward higher mistuning values, and increased thresholds, whereas discrimination performance was unaffected when level cues were also available. Our results suggest that A1-MGBv corticothalamic feedback contributes to the detection of harmonicity, one of the most important grouping cues in the perception of complex sounds.SIGNIFICANCE STATEMENT Perception of a complex auditory scene is based on the ability of the brain to group those sound components that belong to the same source and to segregate them from those belonging to different sources. Because two people talking simultaneously may differ in their voice pitch, perceiving the harmonic structure of sounds is very important for auditory scene analysis. Here we demonstrate mistuning sensitivity in the thalamus and that feedback from the primary auditory cortex is required for the normal ability of ferrets to detect a mistuned harmonic within a complex sound. These results provide novel insight into the function of descending sensory pathways in the brain and suggest that this corticothalamic circuit plays an important role in scene analysis.


Subject(s)
Auditory Cortex/physiology , Auditory Perception/physiology , Feedback, Physiological/physiology , Ferrets/physiology , Thalamus/physiology , Acoustic Stimulation , Animals , Auditory Cortex/cytology , Auditory Cortex/diagnostic imaging , Auditory Threshold/physiology , Behavior, Animal/physiology , Cues , Discrimination, Psychological/physiology , Female , Geniculate Bodies/physiology , Sound , Thalamus/cytology , Thalamus/diagnostic imaging
3.
Eur J Neurosci ; 45(2): 278-289, 2017 01.
Article in English | MEDLINE | ID: mdl-27740711

ABSTRACT

Enhanced detection and discrimination, along with faster reaction times, are the most typical behavioural manifestations of the brain's capacity to integrate multisensory signals arising from the same object. In this study, we examined whether multisensory behavioural gains are observable across different components of the localization response that are potentially under the command of distinct brain regions. We measured the ability of ferrets to localize unisensory (auditory or visual) and spatiotemporally coincident auditory-visual stimuli of different durations that were presented from one of seven locations spanning the frontal hemifield. During the localization task, we recorded the head movements made following stimulus presentation, as a metric for assessing the initial orienting response of the ferrets, as well as the subsequent choice of which target location to approach to receive a reward. Head-orienting responses to auditory-visual stimuli were more accurate and faster than those made to visual but not auditory targets, suggesting that these movements were guided principally by sound alone. In contrast, approach-to-target localization responses were more accurate and faster to spatially congruent auditory-visual stimuli throughout the frontal hemifield than to either visual or auditory stimuli alone. Race model inequality analysis of head-orienting reaction times and approach-to-target response times indicates that different processes, probability summation and neural integration, respectively, are likely to be responsible for the effects of multisensory stimulation on these two measures of localization behaviour.


Subject(s)
Auditory Perception/physiology , Behavior, Animal/physiology , Brain/physiology , Orientation/physiology , Visual Perception/physiology , Acoustic Stimulation/methods , Animals , Female , Ferrets , Male , Photic Stimulation/methods , Reaction Time/physiology
4.
J Acoust Soc Am ; 139(6): EL246, 2016 06.
Article in English | MEDLINE | ID: mdl-27369180

ABSTRACT

The harmonic structure of sounds is an important grouping cue in auditory scene analysis. The ability of ferrets to detect mistuned harmonics was measured using a go/no-go task paradigm. Psychometric functions plotting sensitivity as a function of degree of mistuning were used to evaluate behavioral performance using signal detection theory. The mean (± standard error of the mean) threshold for mistuning detection was 0.8 ± 0.1 Hz, with sensitivity indices and reaction times depending on the degree of mistuning. These data provide a basis for investigation of the neural basis for the perception of complex sounds in ferrets, an increasingly used animal model in auditory research.


Subject(s)
Auditory Perception , Behavior, Animal , Cues , Ferrets/psychology , Motor Activity , Signal Detection, Psychological , Acoustic Stimulation , Animals , Auditory Pathways/physiology , Female , Ferrets/physiology , Psychoacoustics , Reaction Time , Time Factors
5.
J Neurosci ; 33(15): 6659-71, 2013 Apr 10.
Article in English | MEDLINE | ID: mdl-23575862

ABSTRACT

The nucleus basalis (NB) in the basal forebrain provides most of the cholinergic input to the neocortex and has been implicated in a variety of cognitive functions related to the processing of sensory stimuli. However, the role that cortical acetylcholine release plays in perception remains unclear. Here we show that selective loss of cholinergic NB neurons that project to the cortex reduces the accuracy with which ferrets localize brief sounds and prevents them from adaptively reweighting auditory localization cues in response to chronic occlusion of one ear. Cholinergic input to the cortex was disrupted by making bilateral injections of the immunotoxin ME20.4-SAP into the NB. This produced a substantial loss of both p75 neurotrophin receptor (p75(NTR))-positive and choline acetyltransferase-positive cells in this region and of acetylcholinesterase-positive fibers throughout the auditory cortex. These animals were significantly impaired in their ability to localize short broadband sounds (40-500 ms in duration) in the horizontal plane, with larger cholinergic cell lesions producing greater performance impairments. Although they localized longer sounds with normal accuracy, their response times were significantly longer than controls. Ferrets with cholinergic forebrain lesions were also less able to relearn to localize sound after plugging one ear. In contrast to controls, they exhibited little recovery of localization performance after behavioral training. Together, these results show that cortical cholinergic inputs contribute to the perception of sound source location under normal hearing conditions and play a critical role in allowing the auditory system to adapt to changes in the spatial cues available.


Subject(s)
Auditory Perception/physiology , Cerebral Cortex/physiology , Cholinergic Neurons/physiology , Neuronal Plasticity/physiology , Animals , Antibodies, Monoclonal/administration & dosage , Auditory Cortex/physiology , Auditory Perception/drug effects , Basal Nucleus of Meynert/drug effects , Basal Nucleus of Meynert/physiology , Cell Death/drug effects , Cell Death/physiology , Cholinergic Neurons/drug effects , Ferrets , Immunotoxins/administration & dosage , Microinjections , Nerve Degeneration/chemically induced , Nerve Degeneration/psychology , Neural Pathways/drug effects , Neural Pathways/physiology , Neuronal Plasticity/drug effects , Recovery of Function/physiology , Ribosome Inactivating Proteins, Type 1/administration & dosage , Saporins , Sound Localization/drug effects , Sound Localization/physiology
6.
Eur J Neurosci ; 40(6): 2922-40, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24945075

ABSTRACT

Cholinergic inputs to the auditory cortex can modulate sensory processing and regulate stimulus-specific plasticity according to the behavioural state of the subject. In order to understand how acetylcholine achieves this, it is essential to elucidate the circuitry by which cholinergic inputs influence the cortex. In this study, we described the distribution of cholinergic neurons in the basal forebrain and their inputs to the auditory cortex of the ferret, a species used increasingly in studies of auditory learning and plasticity. Cholinergic neurons in the basal forebrain, visualized by choline acetyltransferase and p75 neurotrophin receptor immunocytochemistry, were distributed through the medial septum, diagonal band of Broca, and nucleus basalis magnocellularis. Epipial tracer deposits and injections of the immunotoxin ME20.4-SAP (monoclonal antibody specific for the p75 neurotrophin receptor conjugated to saporin) in the auditory cortex showed that cholinergic inputs originate almost exclusively in the ipsilateral nucleus basalis. Moreover, tracer injections in the nucleus basalis revealed a pattern of labelled fibres and terminal fields that resembled acetylcholinesterase fibre staining in the auditory cortex, with the heaviest labelling in layers II/III and in the infragranular layers. Labelled fibres with small en-passant varicosities and simple terminal swellings were observed throughout all auditory cortical regions. The widespread distribution of cholinergic inputs from the nucleus basalis to both primary and higher level areas of the auditory cortex suggests that acetylcholine is likely to be involved in modulating many aspects of auditory processing.


Subject(s)
Auditory Cortex/anatomy & histology , Basal Forebrain/anatomy & histology , Choline O-Acetyltransferase/metabolism , Neurons/cytology , Receptor, Nerve Growth Factor/metabolism , Animals , Auditory Cortex/metabolism , Basal Forebrain/metabolism , Female , Ferrets , Immunohistochemistry , Male , Neural Pathways/anatomy & histology , Neural Pathways/metabolism , Neuroanatomical Tract-Tracing Techniques , Neurons/metabolism
7.
Hear Res ; 447: 109025, 2024 06.
Article in English | MEDLINE | ID: mdl-38733712

ABSTRACT

Cortical acetylcholine (ACh) release has been linked to various cognitive functions, including perceptual learning. We have previously shown that cortical cholinergic innervation is necessary for accurate sound localization in ferrets, as well as for their ability to adapt with training to altered spatial cues. To explore whether these behavioral deficits are associated with changes in the response properties of cortical neurons, we recorded neural activity in the primary auditory cortex (A1) of anesthetized ferrets in which cholinergic inputs had been reduced by making bilateral injections of the immunotoxin ME20.4-SAP in the nucleus basalis (NB) prior to training the animals. The pattern of spontaneous activity of A1 units recorded in the ferrets with cholinergic lesions (NB ACh-) was similar to that in controls, although the proportion of burst-type units was significantly lower. Depletion of ACh also resulted in more synchronous activity in A1. No changes in thresholds, frequency tuning or in the distribution of characteristic frequencies were found in these animals. When tested with normal acoustic inputs, the spatial sensitivity of A1 neurons in the NB ACh- ferrets and the distribution of their preferred interaural level differences also closely resembled those found in control animals, indicating that these properties had not been altered by sound localization training with one ear occluded. Simulating the animals' previous experience with a virtual earplug in one ear reduced the contralateral preference of A1 units in both groups, but caused azimuth sensitivity to change in slightly different ways, which may reflect the modest adaptation observed in the NB ACh- group. These results show that while ACh is required for behavioral adaptation to altered spatial cues, it is not required for maintenance of the spectral and spatial response properties of A1 neurons.


Subject(s)
Acoustic Stimulation , Auditory Cortex , Basal Forebrain , Ferrets , Animals , Auditory Cortex/metabolism , Auditory Cortex/physiopathology , Basal Forebrain/metabolism , Sound Localization , Acetylcholine/metabolism , Male , Cholinergic Neurons/metabolism , Cholinergic Neurons/pathology , Auditory Pathways/physiopathology , Auditory Pathways/metabolism , Female , Immunotoxins/toxicity , Basal Nucleus of Meynert/metabolism , Basal Nucleus of Meynert/physiopathology , Basal Nucleus of Meynert/pathology , Neurons/metabolism , Auditory Threshold , Adaptation, Physiological , Behavior, Animal
8.
Front Neurosci ; 17: 1067937, 2023.
Article in English | MEDLINE | ID: mdl-36816127

ABSTRACT

Introduction: Sound localization relies on the neural processing of binaural and monaural spatial cues generated by the physical properties of the head and body. Hearing loss in one ear compromises binaural computations, impairing the ability to localize sounds in the horizontal plane. With appropriate training, adult individuals can adapt to this binaural imbalance and largely recover their localization accuracy. However, it remains unclear how long this learning is retained or whether it generalizes to other stimuli. Methods: We trained ferrets to localize broadband noise bursts in quiet conditions and measured their initial head orienting responses and approach-to-target behavior. To evaluate the persistence of auditory spatial learning, we tested the sound localization performance of the animals over repeated periods of monaural earplugging that were interleaved with short or long periods of normal binaural hearing. To explore learning generalization to other stimulus types, we measured the localization accuracy before and after adaptation using different bandwidth stimuli presented against constant or amplitude-modulated background noise. Results: Retention of learning resulted in a smaller initial deficit when the same ear was occluded on subsequent occasions. Each time, the animals' performance recovered with training to near pre-plug levels of localization accuracy. By contrast, switching the earplug to the contralateral ear resulted in less adaptation, indicating that the capacity to learn a new strategy for localizing sound is more limited if the animals have previously adapted to conductive hearing loss in the opposite ear. Moreover, the degree of adaptation to the training stimulus for individual animals was significantly correlated with the extent to which learning extended to untrained octave band target sounds presented in silence and to broadband targets presented in background noise, suggesting that adaptation and generalization go hand in hand. Conclusions: Together, these findings provide further evidence for plasticity in the weighting of monaural and binaural cues during adaptation to unilateral conductive hearing loss, and show that the training-dependent recovery in spatial hearing can generalize to more naturalistic listening conditions, so long as the target sounds provide sufficient spatial information.

9.
J Physiol ; 590(16): 3965-86, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22547635

ABSTRACT

The cerebral cortex plays a critical role in perception and in learning-induced plasticity. We show that reversibly silencing any of the main regions of auditory cortex impairs the ability of adult ferrets to localize sound, with the largest deficit seen after deactivating the primary fields. Although these animals had no trouble localizing longer sound bursts, their performance dropped considerably when auditory spatial cues were altered by occluding one ear with an earplug. In contrast to control ferrets, which recovered their localization abilities with intensive training, adaptation to an earplug was impaired following cortical inactivation, with the greatest disruption in plasticity observed after silencing higher-level cortical areas. These findings imply regional differences in the processing of spatial information across the auditory cortex.


Subject(s)
Auditory Cortex/drug effects , Behavior, Animal/physiology , Ferrets/physiology , Hearing Loss, Central/metabolism , Sound Localization/physiology , Animals , Dosage Forms , Ear Protective Devices , Electrophysiological Phenomena , GABA-A Receptor Agonists/chemistry , GABA-A Receptor Agonists/pharmacology , Muscimol/chemistry , Muscimol/pharmacology , Polyvinyls/chemistry , Polyvinyls/pharmacology
10.
Brain Commun ; 4(3): fcac089, 2022.
Article in English | MEDLINE | ID: mdl-35620170

ABSTRACT

Sensory disconnection from the environment is a hallmark of sleep and is crucial for sleep maintenance. It remains unclear, however, whether internally generated percepts-phantom percepts-may overcome such disconnection and, in turn, how sleep and its effect on sensory processing and brain plasticity may affect the function of the specific neural networks underlying such phenomena. A major hurdle in addressing this relationship is the methodological difficulty to study sensory phantoms, due to their subjective nature and lack of control over the parameters or neural activity underlying that percept. Here, we explore the most prevalent phantom percept, subjective tinnitus-or tinnitus for short-as a model to investigate this. Tinnitus is the permanent perception of a sound with no identifiable corresponding acoustic source. This review offers a novel perspective on the functional interaction between brain activity across the sleep-wake cycle and tinnitus. We discuss characteristic features of brain activity during tinnitus in the awake and the sleeping brain and explore its effect on sleep functions and homeostasis. We ask whether local changes in cortical activity in tinnitus may overcome sensory disconnection and prevent the occurrence of global restorative sleep and, in turn, how accumulating sleep pressure may temporarily alleviate the persistence of a phantom sound. Beyond an acute interaction between sleep and neural activity, we discuss how the effects of sleep on brain plasticity may contribute to aberrant neural circuit activity and promote tinnitus consolidation. Tinnitus represents a unique window into understanding the role of sleep in sensory processing. Clarification of the underlying relationship may offer novel insights into therapeutic interventions in tinnitus management.

11.
Front Neurosci ; 15: 723893, 2021.
Article in English | MEDLINE | ID: mdl-34489635

ABSTRACT

Sound information is transmitted from the ear to central auditory stations of the brain via several nuclei. In addition to these ascending pathways there exist descending projections that can influence the information processing at each of these nuclei. A major descending pathway in the auditory system is the feedback projection from layer VI of the primary auditory cortex (A1) to the ventral division of medial geniculate body (MGBv) in the thalamus. The corticothalamic axons have small glutamatergic terminals that can modulate thalamic processing and thalamocortical information transmission. Corticothalamic neurons also provide input to GABAergic neurons of the thalamic reticular nucleus (TRN) that receives collaterals from the ascending thalamic axons. The balance of corticothalamic and TRN inputs has been shown to refine frequency tuning, firing patterns, and gating of MGBv neurons. Therefore, the thalamus is not merely a relay stage in the chain of auditory nuclei but does participate in complex aspects of sound processing that include top-down modulations. In this review, we aim (i) to examine how lemniscal corticothalamic feedback modulates responses in MGBv neurons, and (ii) to explore how the feedback contributes to auditory scene analysis, particularly on frequency and harmonic perception. Finally, we will discuss potential implications of the role of corticothalamic feedback in music and speech perception, where precise spectral and temporal processing is essential.

12.
Front Neurosci ; 15: 690223, 2021.
Article in English | MEDLINE | ID: mdl-34413722

ABSTRACT

For decades, the corticofugal descending projections have been anatomically well described but their functional role remains a puzzling question. In this review, we will first describe the contributions of neuronal networks in representing communication sounds in various types of degraded acoustic conditions from the cochlear nucleus to the primary and secondary auditory cortex. In such situations, the discrimination abilities of collicular and thalamic neurons are clearly better than those of cortical neurons although the latter remain very little affected by degraded acoustic conditions. Second, we will report the functional effects resulting from activating or inactivating corticofugal projections on functional properties of subcortical neurons. In general, modest effects have been observed in anesthetized and in awake, passively listening, animals. In contrast, in behavioral tasks including challenging conditions, behavioral performance was severely reduced by removing or transiently silencing the corticofugal descending projections. This suggests that the discriminative abilities of subcortical neurons may be sufficient in many acoustic situations. It is only in particularly challenging situations, either due to the task difficulties and/or to the degraded acoustic conditions that the corticofugal descending connections bring additional abilities. Here, we propose that it is both the top-down influences from the prefrontal cortex, and those from the neuromodulatory systems, which allow the cortical descending projections to impact behavioral performance in reshaping the functional circuitry of subcortical structures. We aim at proposing potential scenarios to explain how, and under which circumstances, these projections impact on subcortical processing and on behavioral responses.

13.
Nat Commun ; 12(1): 3916, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34168153

ABSTRACT

Integration of information across the senses is critical for perception and is a common property of neurons in the cerebral cortex, where it is thought to arise primarily from corticocortical connections. Much less is known about the role of subcortical circuits in shaping the multisensory properties of cortical neurons. We show that stimulation of the whiskers causes widespread suppression of sound-evoked activity in mouse primary auditory cortex (A1). This suppression depends on the primary somatosensory cortex (S1), and is implemented through a descending circuit that links S1, via the auditory midbrain, with thalamic neurons that project to A1. Furthermore, a direct pathway from S1 has a facilitatory effect on auditory responses in higher-order thalamic nuclei that project to other brain areas. Crossmodal corticofugal projections to the auditory midbrain and thalamus therefore play a pivotal role in integrating multisensory signals and in enabling communication between different sensory cortical areas.


Subject(s)
Auditory Cortex/physiology , Neural Pathways/physiology , Somatosensory Cortex/physiology , Acoustic Stimulation , Animals , Electrophysiology/methods , Female , GABAergic Neurons/physiology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Interneurons/physiology , Male , Mesencephalon/physiology , Mice, Inbred C57BL , Mice, Transgenic , Optogenetics , Sensory Receptor Cells/physiology , Somatosensory Cortex/cytology , Thalamus/cytology , Thalamus/physiology
14.
J Neurophysiol ; 103(3): 1209-25, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20032231

ABSTRACT

The role of auditory cortex in sound localization and its recalibration by experience was explored by measuring the accuracy with which ferrets turned toward and approached the source of broadband sounds in the horizontal plane. In one group, large bilateral lesions were made of the middle ectosylvian gyrus, where the primary auditory cortical fields are located, and part of the anterior and/or posterior ectosylvian gyrus, which contain higher-level fields. In the second group, the lesions were intended to be confined to primary auditory cortex (A1). The ability of the animals to localize noise bursts of different duration and level was measured before and after the lesions were made. A1 lesions produced a modest disruption of approach-to-target responses to short-duration stimuli (<500 ms) on both sides of space, whereas head orienting accuracy was unaffected. More extensive lesions produced much greater auditory localization deficits, again primarily for shorter sounds. In these ferrets, the accuracy of both the approach-to-target behavior and the orienting responses was impaired, and they could do little more than correctly lateralize the stimuli. Although both groups of ferrets were still able to localize long-duration sounds accurately, they were, in contrast to ferrets with an intact auditory cortex, unable to relearn to localize these stimuli after altering the spatial cues available by reversibly plugging one ear. These results indicate that both primary and nonprimary cortical areas are necessary for normal sound localization, although only higher auditory areas seem to contribute to accurate head orienting behavior. They also show that the auditory cortex, and A1 in particular, plays an essential role in training-induced plasticity in adult ferrets, and that this is the case for both head orienting responses and approach-to-target behavior.


Subject(s)
Auditory Cortex/injuries , Auditory Cortex/physiology , Ferrets/physiology , Sound Localization/physiology , Acoustic Stimulation , Animals , Auditory Cortex/anatomy & histology , Cues , Data Interpretation, Statistical , Electrophysiology , Female , Head Movements/physiology , Learning/physiology , Magnetoencephalography , Male , Neural Pathways/anatomy & histology , Neural Pathways/physiology , Neuronal Plasticity , Psychomotor Performance/physiology
15.
Nat Commun ; 11(1): 324, 2020 01 16.
Article in English | MEDLINE | ID: mdl-31949136

ABSTRACT

Neural adaptation enables sensory information to be represented optimally in the brain despite large fluctuations over time in the statistics of the environment. Auditory contrast gain control represents an important example, which is thought to arise primarily from cortical processing. Here we show that neurons in the auditory thalamus and midbrain of mice show robust contrast gain control, and that this is implemented independently of cortical activity. Although neurons at each level exhibit contrast gain control to similar degrees, adaptation time constants become longer at later stages of the processing hierarchy, resulting in progressively more stable representations. We also show that auditory discrimination thresholds in human listeners compensate for changes in contrast, and that the strength of this perceptual adaptation can be predicted from physiological measurements. Contrast adaptation is therefore a robust property of both the subcortical and cortical auditory system and accounts for the short-term adaptability of perceptual judgments.


Subject(s)
Auditory Cortex/physiology , Auditory Pathways/physiology , Auditory Perception/physiology , Mesencephalon/physiology , Neurons/physiology , Thalamus/physiology , Adaptation, Physiological/physiology , Animals , Auditory Threshold/physiology , Discrimination, Psychological , Electrophysiology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Models, Animal , Models, Neurological , Noise , Optogenetics , Sound Spectrography
16.
Nat Commun ; 10(1): 3075, 2019 07 12.
Article in English | MEDLINE | ID: mdl-31300665

ABSTRACT

The brain has a remarkable capacity to adapt to changes in sensory inputs and to learn from experience. However, the neural circuits responsible for this flexible processing remain poorly understood. Using optogenetic silencing of ArchT-expressing neurons in adult ferrets, we show that within-trial activity in primary auditory cortex (A1) is required for training-dependent recovery in sound-localization accuracy following monaural deprivation. Because localization accuracy under normal-hearing conditions was unaffected, this highlights a specific role for cortical activity in learning. A1-dependent plasticity appears to leave a memory trace that can be retrieved, facilitating adaptation during a second period of monaural deprivation. However, in ferrets in which learning was initially disrupted by perturbing A1 activity, subsequent optogenetic suppression during training no longer affected localization accuracy when one ear was occluded. After the initial learning phase, the reweighting of spatial cues that primarily underpins this plasticity may therefore occur in A1 target neurons.


Subject(s)
Auditory Cortex/physiology , Learning/physiology , Sound Localization/physiology , Acoustic Stimulation , Animals , Auditory Cortex/cytology , Female , Ferrets , Models, Animal , Nerve Net/physiology , Neuronal Plasticity/physiology , Neurons/physiology , Optogenetics
17.
Hear Res ; 229(1-2): 106-15, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17314017

ABSTRACT

Despite extensive subcortical processing, the auditory cortex is believed to be essential for normal sound localization. However, we still have a poor understanding of how auditory spatial information is encoded in the cortex and of the relative contribution of different cortical areas to spatial hearing. We investigated the behavioral consequences of inactivating ferret primary auditory cortex (A1) on auditory localization by implanting a sustained release polymer containing the GABA(A) agonist muscimol bilaterally over A1. Silencing A1 led to a reversible deficit in the localization of brief noise bursts in both the horizontal and vertical planes. In other ferrets, large bilateral lesions of the auditory cortex, which extended beyond A1, produced more severe and persistent localization deficits. To investigate the processing of spatial information by high-frequency A1 neurons, we measured their binaural-level functions and used individualized virtual acoustic space stimuli to record their spatial receptive fields (SRFs) in anesthetized ferrets. We observed the existence of a continuum of response properties, with most neurons preferring contralateral sound locations. In many cases, the SRFs could be explained by a simple linear interaction between the acoustical properties of the head and external ears and the binaural frequency tuning of the neurons. Azimuth response profiles recorded in awake ferrets were very similar and further analysis suggested that the slopes of these functions and location-dependent variations in spike timing are the main information-bearing parameters. Studies of sensory plasticity can also provide valuable insights into the role of different brain areas and the way in which information is represented within them. For example, stimulus-specific training allows accurate auditory localization by adult ferrets to be relearned after manipulating binaural cues by occluding one ear. Reversible inactivation of A1 resulted in slower and less complete adaptation than in normal controls, whereas selective lesions of the descending cortico collicular pathway prevented any improvement in performance. These results reveal a role for auditory cortex in training-induced plasticity of auditory localization, which could be mediated by descending cortical pathways.


Subject(s)
Auditory Cortex/anatomy & histology , Auditory Cortex/physiology , Ferrets/physiology , Ferrets/psychology , Acoustic Stimulation , Animals , Ferrets/anatomy & histology , Neuronal Plasticity , Sound Localization/physiology
18.
J Comp Neurol ; 486(2): 101-16, 2005 May 30.
Article in English | MEDLINE | ID: mdl-15844210

ABSTRACT

Corticofugal projections to the auditory midbrain, the inferior colliculus (IC), influence the way in which specific sets of IC neurons process acoustic signals. We used retrograde tracer (Fluorogold, Fluororuby, microbeads) injections in the IC to study the morphology and location of cortico-collicular projecting neurons and anterograde tracer (dextran biotin) injections in auditory cortical fields to describe the distribution of terminals in the IC. Nissl staining, cytochrome oxidase activity, and neurofilament SMI32 immunostaining were used to delimit the different auditory areas. We defined a primary or "core" auditory cortex and a secondary "caudal" auditory area containing layer V pyramidal neurons that project to the IC. These projections target the central nucleus of the IC (CNIC) ipsilaterally and the IC cortices bilaterally, with the ipsilateral component predominant. Other secondary auditory areas, dorsal and ventral to the core, do not directly participate in this projection. The ventral secondary cortex targets midbrain periaqueductal gray. The projection from the core cortex originates from two classes of layer V pyramidal cells. Cells presenting a tufted apical dendrite in layer I have dense terminal fields in the IC cortices. Pyramids lacking layer I dendritic tufts target the CNIC in a less dense but tonotopic manner. The caudal cortex projection originates from smaller layer V pyramids and targets the IC cortices with dense terminal fields. Descending auditory inputs from the core and caudal areas converge in the dorsal and external cortices of the IC. Descending connections to the gerbil IC form a segregated system in which multiple descending channels originating from different neuronal subpopulations may modulate specific aspects of ascending auditory information.


Subject(s)
Auditory Cortex/cytology , Auditory Pathways/cytology , Biotin/analogs & derivatives , Gerbillinae/anatomy & histology , Inferior Colliculi/cytology , Pyramidal Cells/cytology , Animals , Auditory Cortex/physiology , Auditory Pathways/physiology , Auditory Perception/physiology , Axons/metabolism , Axons/ultrastructure , Brain Mapping , Dendrites/metabolism , Dendrites/ultrastructure , Dextrans , Electron Transport Complex IV/metabolism , Fluorescent Dyes , Functional Laterality/physiology , Gerbillinae/physiology , Immunohistochemistry , Inferior Colliculi/physiology , Neurofilament Proteins/metabolism , Periaqueductal Gray/cytology , Presynaptic Terminals/metabolism , Presynaptic Terminals/ultrastructure , Pyramidal Cells/metabolism
19.
J Comp Neurol ; 523(15): 2187-210, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-25845831

ABSTRACT

Despite numerous studies of auditory cortical processing in the ferret (Mustela putorius), very little is known about the connections between the different regions of the auditory cortex that have been characterized cytoarchitectonically and physiologically. We examined the distribution of retrograde and anterograde labeling after injecting tracers into one or more regions of ferret auditory cortex. Injections of different tracers at frequency-matched locations in the core areas, the primary auditory cortex (A1) and anterior auditory field (AAF), of the same animal revealed the presence of reciprocal connections with overlapping projections to and from discrete regions within the posterior pseudosylvian and suprasylvian fields (PPF and PSF), suggesting that these connections are frequency specific. In contrast, projections from the primary areas to the anterior dorsal field (ADF) on the anterior ectosylvian gyrus were scattered and non-overlapping, consistent with the non-tonotopic organization of this field. The relative strength of the projections originating in each of the primary fields differed, with A1 predominantly targeting the posterior bank fields PPF and PSF, which in turn project to the ventral posterior field, whereas AAF projects more heavily to the ADF, which then projects to the anteroventral field and the pseudosylvian sulcal cortex. These findings suggest that parallel anterior and posterior processing networks may exist, although the connections between different areas often overlap and interactions were present at all levels.


Subject(s)
Auditory Cortex/anatomy & histology , Ferrets/anatomy & histology , Animals , Female , Male , Neural Pathways/anatomy & histology , Neuroanatomical Tract-Tracing Techniques
20.
Behav Neurosci ; 129(4): 473-90, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26052794

ABSTRACT

The precise encoding of temporal features of auditory stimuli by the mammalian auditory system is critical to the perception of biologically important sounds, including vocalizations, speech, and music. In this study, auditory gap-detection behavior was evaluated in adult pigmented ferrets (Mustelid putorius furo) using bandpassed stimuli designed to widely sample the ferret's behavioral and physiological audiogram. Animals were tested under positive operant conditioning, with psychometric functions constructed in response to gap-in-noise lengths ranging from 3 to 270 ms. Using a modified version of this gap-detection task, with the same stimulus frequency parameters, we also tested a cohort of normal-hearing human subjects. Gap-detection thresholds were computed from psychometric curves transformed according to signal detection theory, revealing that for both ferrets and humans, detection sensitivity was worse for silent gaps embedded within low-frequency noise compared with high-frequency or broadband stimuli. Additional psychometric function analysis of ferret behavior indicated effects of stimulus spectral content on aspects of behavioral performance related to decision-making processes, with animals displaying improved sensitivity for broadband gap-in-noise detection. Reaction times derived from unconditioned head-orienting data and the time from stimulus onset to reward spout activation varied with the stimulus frequency content and gap length, as well as the approach-to-target choice and reward location. The present study represents a comprehensive evaluation of gap-detection behavior in ferrets, while similarities in performance with our human subjects confirm the use of the ferret as an appropriate model of temporal processing.


Subject(s)
Auditory Threshold , Acoustic Stimulation , Adult , Animals , Decision Making , Female , Ferrets , Humans , Male , Psychometrics , Sound Spectrography , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL