Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Arch Environ Contam Toxicol ; 84(1): 85-100, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36577861

ABSTRACT

Complex mixtures of unknown contaminants present a challenge to identify toxicological risks without using large numbers of animals and labor-intensive screens of all organs. This study examined soil extracts from a legacy-contaminated pesticide packaging and blending site. HepG2 cytotoxicity was used as an initial screen of 18 soil samples; then, three extracts (A, B and C) from different locations at the study site were used for testing in animals. The first two extracts were identified as the most toxic in vitro, and the latter extract obtained from a location further from these two toxic sampling sites. Then, target organ toxicities were identified following biweekly oral gavage for one month of three soil extracts (0.1% in polyethylene glycol or PEG) compared to vehicle control in male Sprague-Dawley rats (n = 9-10/group). Exposure to extract A significantly increased neutrophils and lymphocytes compared to control. In contrast, all extracts increased plasma α-2 macroglobulin and caused mild-to-moderate lymphocytic proliferation within the spleen white pulp, all indicative of inflammation. Rats exposed to all soil extracts exhibited acute tubular necrosis. Cholinesterase activity was significantly reduced in plasma, but not brain, after exposure to extract A compared to control. Increased hepatic ethoxyresorufin-o-deethylase activity compared to control was observed following exposure to extracts A and B. Exposure to soil extract C in rats showed a prolonged QTc interval in electrocardiography as well as increased brain lipid peroxidation. Candidate contaminants are organochlorine, organophosphate/carbamate pesticides or metabolites. Overall, HepG2 cytotoxicity did not successfully predict the neurotoxicity and cardiotoxicity observed with extract C but was more successful with suspected hydrocarbon toxicities in extracts A and B. Caution should be taken when extrapolating the observation of no effects from in vitro cell culture to in vivo toxicity, and better cell culture lines or assays should be explored.


Subject(s)
Liver , Soil , Rats , Male , Animals , Rats, Sprague-Dawley
2.
J Environ Manage ; 313: 114942, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35421693

ABSTRACT

Wild pollinator numbers are known to be positively associated with amounts of flower-rich habitat at landscape level. Increasing floral resources can be particularly beneficial in relatively nectar-poor agricultural systems and having a baseline understanding of the temporal and spatial availability of resources can allow targeted habitat management. Very high-resolution remote sensing has potential to facilitate accurate mapping of fine-scale, within-habitat pollinator foraging resources, thereby allowing spatial and temporal gaps to be identified and addressed, improving predictions of pollinator numbers, and enabling remote monitoring of pollinator conservation measures. Concentrating on hedgerow and flower-rich field margins in a UK agricultural landscape, we showed that multispectral airborne imagery with 3 cm and 7 cm spatial resolutions can be used to classify five nectar-rich flowering plant species (Prunus spinosa, Crataegus monogyna, Rubus fruticosus, Silene dioica and Centaurea nigra) using a maximum likelihood classification algorithm. In 2019, we separately acquired 3 cm and 7 cm imagery for the months of March, May and July, respectively. Overall accuracies were above 90% for each month at both 3 cm and 7 cm resolutions (range 92.32%-98.72%), supporting previous research that suggests higher spatial resolutions do not necessarily lead to higher accuracies, as pixel variability is increased. Remaining challenges include determining which co-flowering species of similar colours in the visible range can be distinguished from one another within classifications and quantifying floral unit density from classifications so that the nectar sugar supply can be calculated. Nonetheless, we provided a prototype approach for mapping pollinator foraging resources in an agricultural context, which can be extended to other nectar-rich species. The foundation is set for developing a remote sensing pipeline that can provide valuable data on the availability of nectar-rich flowering plant species at different time-points throughout the year.


Subject(s)
Plant Nectar , Pollination , Ecosystem , Flowers , Sugars
SELECTION OF CITATIONS
SEARCH DETAIL