Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Chemosphere ; 239: 124709, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31499302

ABSTRACT

The effect of organic fertilizers on soil phosphorus (P) availability is usually mainly associated with the rate and forms of P applied, while they also alter the soil physical-chemical properties, able to change P availability. We aimed to highlight the impact of pH and organic C modifications in soil on the inorganic P (Pi) sorption capacity and availability as compared to the effect of P accumulation after mineral or organic fertilizers. We conducted a 10-years-old field experiment on an andosol and compared fields that had been amended with mineral or organic (dairy slurry and manure compost) fertilizers against a non-fertilized control. Water and Olsen extractions and Pi sorption experiments were realized on soils sampled after 6 and 10 years of trial. We also realized an artificial and ex situ alkalization of the control soil to isolate the effect of pH on Pi sorption capacity. Organic fertilizer application increased total P, pH, and organic C in soil. Pi-Olsen increased mainly with soil total P (r2 adj = 0.79), while Pi-water increased jointly with soil total P and pH (r2 adj = 0.85). The Pi sorption capacity decreased with organic fertilizer application. Artificial and ex situ alkalization of the control soil showed that Pi sorption capacity decreased with increasing pH. Our study demonstrated that, beyond the P fertilization rate, the increase in organic C content and even more so in pH induced by a decade of organic fertilizer applications in soil decreased the Pi sorption capacity and consequently increased Pi-water in soil.


Subject(s)
Fertilizers , Phosphorus/chemistry , Soil/chemistry , Adsorption , Carbon , Hydrogen-Ion Concentration/drug effects , Manure , Minerals , Phosphorus/analysis , Phosphorus/pharmacology , Soil/standards
2.
Sci Total Environ ; 301(1-3): 251-61, 2003 Jan 01.
Article in English | MEDLINE | ID: mdl-12493201

ABSTRACT

The sources and potential availability of chromium (Cr) on soils formed on ultramafic rocks were investigated with mineralogical studies and selective chemical extractions. Soil solutions were collected in the field (i) along a soil toposequence under natural vegetation with ceramic cups; (ii) under grass in a mandarin trees plantation with tension-free tube lysimeters. On selected soil solutions, the Cr(VI) was determined colorimetrically with the s-diphenylcarbazide method and total Cr by ICP-AES and speciation of Cr(VI) was performed with the MINEQL+ V 4.5 software. The main mineralogical sources of Cr were Cr-substituted goethite and chromite. Up to 90 mg kg(-1) of Cr was extracted by KH(2)PO(4), whereas KCl extractable Cr was very low, indicating that exchangeable Cr was mainly in the highly toxic Cr(VI) form in these soils. Under natural vegetation, the Cr concentrations in the soil solutions remained relatively low (<20 microg l(-1)) due to the high retention of the Cr(VI) anions by Fe-oxides. The Cr concentrations were larger in well aerated colluvial soils, where high levels of Mn-oxides are able to oxidize Cr(III) to Cr(VI), than in piedmont soil where the Mn-oxide content is lower, or in alluvial soils from the lowlands, where waterlogging occurs. Cr concentrations reached 700 microg l(-1) in the field that was fertilized with high amount of phosphorus, due to the exchange of Cr(VI) with phosphate. In such conditions, toxicity phenomena for crops can be expected.


Subject(s)
Chromium/analysis , Soil Pollutants/analysis , Biological Availability , Chromium/chemistry , Fertilizers , New Caledonia , Oxidation-Reduction , Plants , Poaceae
SELECTION OF CITATIONS
SEARCH DETAIL