Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters

Publication year range
1.
J Infect Dis ; 229(6): 1883-1893, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38330357

ABSTRACT

BACKGROUND: Malaria is preventable yet causes >600 000 deaths annually. RTS,S, the first marketed malaria vaccine, has modest efficacy, but improvements are needed for eradication. METHODS: We conducted an open-label, dose escalation phase 1 study of a full-length recombinant circumsporozoite protein vaccine (rCSP) administered with adjuvant glucopyranosyl lipid A-liposome Quillaja saponaria 21 formulation (GLA-LSQ) on days 1, 29, and 85 or 1 and 490 to healthy, malaria-naive adults. The primary end points were safety and reactogenicity. The secondary end points were antibody responses and Plasmodium falciparum parasitemia after homologous controlled human malaria infection. RESULTS: Participants were enrolled into 4 groups receiving rCSP/GLA-LSQ: 10 µg × 3 (n = 20), 30 µg × 3 (n = 10), 60 µg × 3 (n = 10), or 60 µg × 2 (n = 9); 10 participants received 30 µg rCSP alone × 3, and there were 6 infectivity controls. Participants experienced no serious adverse events. Rates of solicited and unsolicited adverse events were similar among groups. All 26 participants who underwent controlled human malaria infection 28 days after final vaccinations developed malaria. Increasing vaccine doses induced higher immunoglobulin G titers but did not achieve previously established RTS,S benchmarks. CONCLUSIONS: rCSP/GLA-LSQ had favorable safety results. However, tested regimens did not induce protective immunity. Further investigation could assess whether adjuvant or schedule adjustments improve efficacy. CLINICAL TRIALS REGISTRATION: NCT03589794.


Subject(s)
Adjuvants, Immunologic , Antibodies, Protozoan , Lipid A , Liposomes , Malaria Vaccines , Malaria, Falciparum , Plasmodium falciparum , Protozoan Proteins , Humans , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Malaria Vaccines/adverse effects , Malaria, Falciparum/prevention & control , Malaria, Falciparum/immunology , Adult , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Female , Male , Adjuvants, Immunologic/administration & dosage , Young Adult , Lipid A/analogs & derivatives , Lipid A/administration & dosage , Lipid A/immunology , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Quillaja/chemistry , Adolescent , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects , Middle Aged , Glucosides
2.
Health Promot Pract ; 25(5): 799-813, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38174691

ABSTRACT

Informed by the social ecological model, which asserts that health behaviors and beliefs are the result of multiple levels of influence, we examined factors related to parents' support for in-school COVID-19 mitigation strategies. Using data from a survey of 567 parents/caregivers of public elementary and middle school students in eight Maryland counties, we employed regression models to examine relationships between parent-, child-, family-, school-, and community-level factors and acceptability of mitigation strategies. Acceptance of COVID-19 mitigation strategies was positively correlated with child- and family-level factors, including child racial identity (parents of Black children were more accepting than those of White children, odds ratio [OR]: 2.5, 95% confidence interval [CI] = [1.5, 4.1]), parent receipt of the COVID-19 vaccine (OR: 2.4, 95% CI = [1.5, 3.7]), and parent Democrat or Independent political affiliation (compared with Republican affiliation, OR: 4.2, 95% CI = [2.6, 6.7]; OR: 2.2, 95%CI = [1.3, 3.8], respectively). Acceptance was also positively associated with parents' perceptions of their school's mitigation approach, including higher school mitigation score, indicating more intensive mitigation policies (OR: 1.1, 95% CI = [1.0, 1.1]), better school communication about COVID-19 (OR: 1.7, 95% CI = [1.4, 1.9]) and better school capacity to address COVID-19 (OR: 1.9, 95% CI = [1.5, 2.4]). Community-level factors were not associated with acceptance. Child- and parent-level factors identified suggest potential groups for messaging regarding mitigation strategies. School-level factors may play an important role in parents' acceptance of in-school mitigation strategies. Schools' capacity to address public health threats may offer an underappreciated and modifiable setting for disseminating and reinforcing public health guidance.


Subject(s)
COVID-19 , Caregivers , Parents , SARS-CoV-2 , Schools , Humans , COVID-19/prevention & control , Parents/psychology , Female , Male , Child , Maryland , Caregivers/psychology , Adult , Adolescent , Students/psychology , Surveys and Questionnaires
3.
J Infect Dis ; 227(11): 1293-1302, 2023 05 29.
Article in English | MEDLINE | ID: mdl-36484484

ABSTRACT

BACKGROUND: Safe and effective respiratory syncytial virus (RSV) vaccines remain elusive. This was a phase I/II trial (NCT02927873) of ChAd155-RSV, an investigational chimpanzee adenovirus-RSV vaccine expressing 3 proteins (fusion, nucleoprotein, and M2-1), administered to 12-23-month-old RSV-seropositive children followed up for 2 years after vaccination. METHODS: Children were randomized to receive 2 doses of ChAd155-RSV or placebo (at a 1:1 ratio) (days 1 and 31). Doses escalated from 0.5 × 1010 (low dose [LD]) to 1.5 × 1010 (medium dose [MD]) to 5 × 1010 (high dose [HD]) viral particles after safety assessment. Study end points included anti-RSV-A neutralizing antibody (Nab) titers through year 1 and safety through year 2. RESULTS: Eighty-two participants were vaccinated, including 11, 14, and 18 in the RSV-LD, RSV-MD, and RSV-HD groups, respectively, and 39 in the placebo groups. Solicited adverse events were similar across groups, except for fever (more frequent with RSV-HD). Most fevers were mild (≤38.5°C). No vaccine-related serious adverse events or RSV-related hospitalizations were reported. There was a dose-dependent increase in RSV-A Nab titers in all groups after dose 1, without further increase after dose 2. RSV-A Nab titers remained higher than prevaccination levels at year 1. CONCLUSIONS: Three ChAd155-RSV dosages were found to be well tolerated. A dose-dependent immune response was observed after dose 1, with no observed booster effect after dose 2. Further investigation of ChAd155-RSV in RSV-seronegative children is warranted. CLINICAL TRIALS REGISTRATION: NCT02927873.


Respiratory syncytial virus (RSV) is among the main causes of bronchiolitis and pneumonia regularly leading to hospitalization in children. A safe and effective vaccine to prevent RSV infection in this age group has not yet been found, despite great efforts over several decades. This study tested a new candidate RSV vaccine, expressing 3 important pieces of the virus, in toddlers who already had a previous RSV infection. The vaccine was generally well tolerated. Vaccination triggered antibodies against RSV that were able to block the virus in laboratory tests and that persisted for 1 year.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Humans , Infant , Antibodies, Neutralizing , Antibodies, Viral , Respiratory Syncytial Virus, Human/genetics
4.
BMC Bioinformatics ; 23(1): 15, 2022 Jan 06.
Article in English | MEDLINE | ID: mdl-34991452

ABSTRACT

BACKGROUND: RIFINs and STEVORs are variant surface antigens expressed by P. falciparum that play roles in severe malaria pathogenesis and immune evasion. These two highly diverse multigene families feature multiple paralogs, making their classification challenging using traditional bioinformatic methods. RESULTS: STRIDE (STevor and RIfin iDEntifier) is an HMM-based, command-line program that automates the identification and classification of RIFIN and STEVOR protein sequences in the malaria parasite Plasmodium falciparum. STRIDE is more sensitive in detecting RIFINs and STEVORs than available PFAM and TIGRFAM tools and reports RIFIN subtypes and the number of sequences with a FHEYDER amino acid motif, which has been associated with severe malaria pathogenesis. CONCLUSIONS: STRIDE will be beneficial to malaria research groups analyzing genome sequences and transcripts of clinical field isolates, providing insight into parasite biology and virulence.


Subject(s)
Malaria, Falciparum , Plasmodium falciparum , Antigens, Protozoan , Antigens, Surface , Erythrocytes , Humans , Plasmodium falciparum/genetics , Protozoan Proteins/genetics
5.
J Infect Dis ; 223(11): 1943-1947, 2021 06 04.
Article in English | MEDLINE | ID: mdl-32992328

ABSTRACT

Circumsporozoite protein (CSP) coats the Plasmodium falciparum sporozoite surface and is a major malaria subunit vaccine target. We measured epitope-specific reactivity to field-derived CSP haplotypes in serum samples from Malian adults and children on a custom peptide microarray. Compared to children, adults showed greater antibody responses and responses to more variants in regions proximal to and within the central repeat region. Children acquired short-lived immunity to an epitope proximal to the central repeat region but not to the central repeat region itself. This approach has the potential to differentiate immunodominant from protective epitope-specific responses when combined with longitudinal infection data.


Subject(s)
Antibodies, Protozoan/immunology , Antibody Formation , Malaria Vaccines , Malaria, Falciparum , Adult , Child , Epitopes , Humans , Malaria Vaccines/immunology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Mali , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Vaccines, Subunit/immunology
6.
Clin Infect Dis ; 73(7): e2424-e2435, 2021 10 05.
Article in English | MEDLINE | ID: mdl-32920641

ABSTRACT

BACKGROUND: A live-attenuated Plasmodium falciparum sporozoite (SPZ) vaccine (PfSPZ Vaccine) has shown up to 100% protection against controlled human malaria infection (CHMI) using homologous parasites (same P. falciparum strain as in the vaccine). Using a more stringent CHMI, with heterologous parasites (different P. falciparum strain), we assessed the impact of higher PfSPZ doses, a novel multi-dose prime regimen, and a delayed vaccine boost upon vaccine efficacy (VE). METHODS: We immunized 4 groups that each contained 15 healthy, malaria-naive adults. Group 1 received 5 doses of 4.5 x 105 PfSPZ (Days 1, 3, 5, and 7; Week 16). Groups 2, 3, and 4 received 3 doses (Weeks 0, 8, and 16), with Group 2 receiving 9.0 × 105/doses; Group 3 receiving 18.0 × 105/doses; and Group 4 receiving 27.0 × 105 for dose 1 and 9.0 × 105 for doses 2 and 3. VE was assessed by heterologous CHMI after 12 or 24 weeks. Volunteers not protected at 12 weeks were boosted prior to repeat CHMI at 24 weeks. RESULTS: At 12-week CHMI, 6/15 (40%) participants in Group 1 (P = .04) and 3/15 (20%) participants in Group 2 remained aparasitemic, as compared to 0/8 controls. At 24-week CHMI, 3/13 (23%) participants in Group 3 and 3/14 (21%) participants in Group 4 remained aparasitemic, versus 0/8 controls (Groups 2-4, VE not significant). Postboost, 9/14 (64%) participants versus 0/8 controls remained aparasitemic (3/6 in Group 1, P = .025; 6/8 in Group 2, P = .002). CONCLUSIONS: Administering 4 stacked priming injections (multi-dose priming) resulted in 40% VE against heterologous CHMI, while dose escalation of PfSPZ using single-dose priming was not significantly protective. Boosting unprotected subjects improved VE at 24 weeks, to 64%. CLINICAL TRIALS REGISTRATION: NCT02601716.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Adult , Animals , Humans , Malaria, Falciparum/prevention & control , Plasmodium falciparum , Sporozoites
7.
Proc Natl Acad Sci U S A ; 114(10): 2711-2716, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28223498

ABSTRACT

A live-attenuated malaria vaccine, Plasmodium falciparum sporozoite vaccine (PfSPZ Vaccine), confers sterile protection against controlled human malaria infection (CHMI) with Plasmodium falciparum (Pf) parasites homologous to the vaccine strain up to 14 mo after final vaccination. No injectable malaria vaccine has demonstrated long-term protection against CHMI using Pf parasites heterologous to the vaccine strain. Here, we conducted an open-label trial with PfSPZ Vaccine at a dose of 9.0 × 105 PfSPZ administered i.v. three times at 8-wk intervals to 15 malaria-naive adults. After CHMI with homologous Pf parasites 19 wk after final immunization, nine (64%) of 14 (95% CI, 35-87%) vaccinated volunteers remained without parasitemia compared with none of six nonvaccinated controls (P = 0.012). Of the nine nonparasitemic subjects, six underwent repeat CHMI with heterologous Pf7G8 parasites 33 wk after final immunization. Five (83%) of six (95% CI, 36-99%) remained without parasitemia compared with none of six nonvaccinated controls. PfSPZ-specific T-cell and antibody responses were detected in all vaccine recipients. Cytokine production by T cells from vaccinated subjects after in vitro stimulation with homologous (NF54) or heterologous (7G8) PfSPZ were highly correlated. Interestingly, PfSPZ-specific T-cell responses in the blood peaked after the first immunization and were not enhanced by subsequent immunizations. Collectively, these data suggest durable protection against homologous and heterologous Pf parasites can be achieved with PfSPZ Vaccine. Ongoing studies will determine whether protective efficacy can be enhanced by additional alterations in the vaccine dose and number of immunizations.


Subject(s)
Malaria Vaccines/administration & dosage , Malaria, Falciparum/prevention & control , Plasmodium falciparum/drug effects , Vaccines, Attenuated/administration & dosage , Adolescent , Adult , Female , Healthy Volunteers , Humans , Malaria Vaccines/adverse effects , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Male , Middle Aged , Plasmodium falciparum/pathogenicity , Sporozoites/immunology , Sporozoites/pathogenicity , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/parasitology , Vaccines, Attenuated/adverse effects , Vaccines, Attenuated/immunology
8.
J Infect Dis ; 220(12): 1962-1966, 2019 11 06.
Article in English | MEDLINE | ID: mdl-31419294

ABSTRACT

Direct venous inoculation of 3.2 × 103 aseptic, purified, cryopreserved, vialed Plasmodium falciparum (Pf) strain NF54 sporozoites, PfSPZ Challenge (NF54), has been used for controlled human malaria infection (CHMI) in the United States, 4 European countries, and 6 African countries. In nonimmune adults, this results in 100% infection rates. We conducted a double-blind, randomized, dose-escalation study to assess the infectivity of the 7G8 clone of Pf (PfSPZ Challenge [7G8]). Results showed dose-dependent infectivity from 43% for 8 × 102 PfSPZ to 100% for 4.8 × 103 PfSPZ. PfSPZ Challenge (7G8) will allow for more complete assessment by CHMI of antimalarial vaccines and drugs.


Subject(s)
Dose-Response Relationship, Immunologic , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Malaria, Falciparum/parasitology , Plasmodium falciparum/immunology , Sporozoites/immunology , Administration, Intravenous , Adult , Female , Humans , Malaria Vaccines/administration & dosage , Malaria Vaccines/adverse effects , Malaria, Falciparum/immunology , Male , Vaccination
9.
Malar J ; 18(1): 13, 2019 Jan 18.
Article in English | MEDLINE | ID: mdl-30658710

ABSTRACT

BACKGROUND: A malaria vaccine based on Plasmodium falciparum apical membrane antigen 1 (AMA1) elicited strain specific efficacy in Malian children that waned in the second season after vaccination despite sustained AMA1 antibody titers. With the goal of identifying a humoral correlate of vaccine-induced protection, pre- and post-vaccination sera from children vaccinated with the AMA1 vaccine and from a control group that received a rabies vaccine were tested for AMA1-specific immunoglobulin G (IgG) subclasses (IgG1, IgG2, IgG3, and IgG4) and for antibody avidity. METHODS: Samples from a previously completed Phase 2 AMA1 vaccine trial in children residing in Mali, West Africa were used to determine AMA1-specific IgG subclass antibody titers and avidity by ELISA. Cox proportional hazards models were used to assess correlation between IgG subclass antibody titers and risk of time to first or only clinical malaria episode and risk of multiple episodes. Asexual P. falciparum parasite density measured for each child as area under the curve were used to assess correlation between IgG subclass antibody titers and parasite burden. RESULTS: AMA1 vaccination did not elicit a change in antibody avidity; however, AMA1 vaccinees had a robust IgG subclass response that persisted over the malaria transmission season. AMA1-specific IgG subclass responses were not associated with decreased risk of subsequent clinical malaria. For the AMA1 vaccine group, IgG3 levels at study day 90 correlated with high parasite burden during days 90-240. In the control group, AMA1-specific IgG subclass rise and persistence over the malaria season was modest and correlated with age. In the control group, titers of several IgG subclasses at days 90 and 240 correlated with parasite burden over the first 90 study days, and IgG3 at day 240 correlated with parasite burden during days 90-240. CONCLUSIONS: Neither IgG subclass nor avidity was associated with the modest, strain-specific efficacy elicited by this blood stage malaria vaccine. Although a correlate of protection was not identified, correlations between subclass titers and age, and correlations between IgG subclass titers and parasite burden, defined by area under the curve parasitaemia levels, were observed, which expand knowledge about IgG subclass responses. IgG3, known to have the shortest half-life of the IgG subclasses, might be the most temporally relevant indicator of ongoing malaria exposure when examining antibody responses to AMA1.


Subject(s)
Antibodies, Protozoan/immunology , Antibody Affinity/immunology , Antigens, Protozoan/immunology , Immunoglobulin G/immunology , Malaria Vaccines/immunology , Membrane Proteins/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Antigens, Protozoan/administration & dosage , Child , Child, Preschool , Female , Humans , Infant , Male , Mali , Membrane Proteins/administration & dosage , Protozoan Proteins/administration & dosage
10.
Malar J ; 18(1): 273, 2019 Aug 13.
Article in English | MEDLINE | ID: mdl-31409360

ABSTRACT

BACKGROUND: Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP1) antigens play a critical role in host immune evasion. Serologic responses to these antigens have been associated with protection from clinical malaria, suggesting that antibodies to PfEMP1 antigens may contribute to natural immunity. The first N-terminal constitutive domain in a PfEMP1 is the Duffy binding-like alpha (DBL-α) domain, which contains a 300 to 400 base pair region unique to each particular protein (the DBL-α "tag"). This DBL-α tag has been used as a marker of PfEMP1 diversity and serologic responses in malaria-exposed populations. In this study, using sera from a malaria-endemic region, responses to DBL-α tags were compared to responses to the corresponding entire DBL-α domain (or "parent" domain) coupled with the succeeding cysteine-rich interdomain region (CIDR). METHODS: A protein microarray populated with DBL-α tags, the parent DBL-CIDR head structures, and downstream PfEMP1 protein fragments was probed with sera from Malian children (aged 1 to 6 years) and adults from the control arms of apical membrane antigen 1 (AMA1) vaccine clinical trials before and during a malaria transmission season. Serological responses to the DBL-α tag and the DBL-CIDR head structure were measured and compared in children and adults, and throughout the season. RESULTS: Malian serologic responses to a PfEMP1's DBL-α tag region did not correlate with seasonal malaria exposure, or with responses to the parent DBL-CIDR head structure in either children or adults. Parent DBL-CIDR head structures were better indicators of malaria exposure. CONCLUSIONS: Larger PfEMP1 domains may be better indicators of malaria exposure than short, variable PfEMP1 fragments such as DBL-α tags. PfEMP1 head structures that include conserved sequences appear particularly well suited for study as serologic predictors of malaria exposure.


Subject(s)
Antigens, Protozoan/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/physiology , Protozoan Proteins/immunology , Adult , Child , Child, Preschool , Conserved Sequence , Humans , Infant , Middle Aged , Protein Structure, Tertiary , Young Adult
11.
PLoS Pathog ; 10(9): e1004404, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25232738

ABSTRACT

Enteroaggregative Escherichia coli (EAEC) is a leading cause of acute and persistent diarrhea worldwide. A recently emerged Shiga-toxin-producing strain of EAEC resulted in significant mortality and morbidity due to progressive development of hemolytic-uremic syndrome. The attachment of EAEC to the human intestinal mucosa is mediated by aggregative adherence fimbria (AAF). Using X-ray crystallography and NMR structures, we present new atomic resolution insight into the structure of AAF variant I from the strain that caused the deadly outbreak in Germany in 2011, and AAF variant II from archetype strain 042, and propose a mechanism for AAF-mediated adhesion and biofilm formation. Our work shows that major subunits of AAF assemble into linear polymers by donor strand complementation where a single minor subunit is inserted at the tip of the polymer by accepting the donor strand from the terminal major subunit. Whereas the minor subunits of AAF have a distinct conserved structure, AAF major subunits display large structural differences, affecting the overall pilus architecture. These structures suggest a mechanism for AAF-mediated adhesion and biofilm formation. Binding experiments using wild type and mutant subunits (NMR and SPR) and bacteria (ELISA) revealed that despite the structural differences AAF recognize a common receptor, fibronectin, by employing clusters of basic residues at the junction between subunits in the pilus. We show that AAF-fibronectin attachment is based primarily on electrostatic interactions, a mechanism not reported previously for bacterial adhesion to biotic surfaces.


Subject(s)
Adhesins, Escherichia coli/immunology , Bacterial Adhesion/immunology , Escherichia coli Infections/immunology , Escherichia coli Proteins/immunology , Escherichia coli/pathogenicity , Fimbriae, Bacterial/chemistry , Host-Pathogen Interactions/immunology , Adhesins, Escherichia coli/genetics , Amino Acid Sequence , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/growth & development , Escherichia coli/immunology , Escherichia coli Infections/microbiology , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Fibronectins/metabolism , Humans , Immunoblotting , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Magnetic Resonance Spectroscopy , Microscopy, Fluorescence , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation/genetics , Protein Conformation , Sequence Homology, Amino Acid
12.
J Infect Dis ; 212(11): 1778-86, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26019283

ABSTRACT

BACKGROUND: Hemoglobin C trait, like hemoglobin S trait, protects against severe malaria in children, but it is unclear whether hemoglobin C trait also protects against uncomplicated malaria. We hypothesized that Malian children with hemoglobin C trait would have a lower risk of clinical malaria than children with hemoglobin AA. METHODS: Three hundred children aged 0-6 years were enrolled in a cohort study of malaria incidence in Bandiagara, Mali, with continuous passive and monthly active follow-up from June 2009 to June 2010. RESULTS: Compared to hemoglobin AA children (n = 242), hemoglobin AC children (n = 39) had a longer time to first clinical malaria episode (hazard ratio [HR], 0.19; P = .001; 364 median malaria-free days vs 181 days), fewer episodes of clinical malaria, and a lower cumulative parasite burden. Similarly, hemoglobin AS children (n = 14) had a longer time to first clinical malaria episode than hemoglobin AA children (HR, 0.15; P = .015; 364 median malaria-free days vs 181 days), but experienced the most asymptomatic malaria infections of any group. CONCLUSIONS: Both hemoglobin C and S traits exerted a protective effect against clinical malaria episodes, but appeared to do so by mechanisms that differentially affect the response to infecting malaria parasites.


Subject(s)
Genetic Predisposition to Disease/epidemiology , Genetic Predisposition to Disease/genetics , Hemoglobin C/genetics , Malaria, Falciparum/epidemiology , Malaria, Falciparum/genetics , Child , Child, Preschool , Cohort Studies , Female , Hemoglobin, Sickle/genetics , Humans , Incidence , Infant , Infant, Newborn , Male , Mali/epidemiology
13.
JAMA ; 314(3): 237-46, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26197184

ABSTRACT

IMPORTANCE: Human infections with the avian influenza A(H7N9) virus were first reported in China in 2013 and continue to occur. Hemagglutinin H7 administered alone is a poor immunogen necessitating evaluation of adjuvanted H7N9 vaccines. OBJECTIVE: To evaluate the immunogenicity and safety of an inactivated H7N9 vaccine with and without AS03 adjuvant, as well as mixed vaccine schedules that included sequential administration of AS03- and MF59-containing formulations and of adjuvanted and unadjuvanted formulations. DESIGN, SETTING, AND PARTICIPANTS: Double-blind, phase 2 trial at 5 US sites enrolled 980 adults aged 19 through 64 years from September 2013 through November 2013; safety follow-up was completed in January 2015. INTERVENTIONS: The H7N9 vaccine was given on days 0 and 21 at nominal doses of 3.75 µg, 7.5 µg, 15 µg, and 45 µg of hemagglutinin with or without AS03 or MF59 adjuvant mixed on site. MAIN OUTCOMES AND MEASURES: Proportions achieving a hemagglutination inhibition antibody (HIA) titer of 40 or higher at 21 days after the second vaccination; vaccine-related serious adverse events through 12 months after the first vaccination; and solicited signs and symptoms after vaccination through day 7. RESULTS: Two doses of vaccine were required to induce detectable antibody titers in most participants. After 2 doses of an H7N9 formulation containing 15 µg of hemagglutinin given without adjuvant, with AS03 adjuvant, or with MF59 adjuvant, the proportion achieving an HIA titer of 40 or higher was 2% (95% CI, 0%-7%) without adjuvant (n = 94), 84% (95% CI, 76%-91%) with AS03 adjuvant (n = 96), and 57% (95% CI, 47%-68%) with MF59 adjuvant (n = 92) (P < .001 for comparison of the AS03 and MF59 schedules). The 2 schedules alternating AS03-and MF59-adjuvanted formulations led to lower geometric mean titers (GMTs) of (41.5 [95% CI, 31.7-54.4]; n = 92) and (58.6 [95% CI, 44.3-77.6]; n = 96) than the group induced by 2 AS03-adjuvanted formulations (n = 96) (103.4 [95% CI, 78.7-135.9]; P < .001) but higher GMTs than 2 doses of MF59-adjuvanted formulation (n = 94) (29.0 [95% CI, 22.4-37.6]; P < .001). CONCLUSIONS AND RELEVANCE: The AS03 and MF59 adjuvants augmented the immune responses to 2 doses of an inactivated H7N9 influenza vaccine, with AS03-adjuvanted formulations inducing the highest titers. This study of 2 adjuvants used in influenza vaccine formulations with adjuvant mixed on site provides immunogenicity information that may be informative to influenza pandemic preparedness programs. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT01942265.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Influenza A Virus, H7N9 Subtype , Influenza Vaccines/administration & dosage , Influenza, Human/immunology , Adult , Age Factors , Antibodies, Viral/blood , Double-Blind Method , Drug Combinations , Female , Hemagglutination Inhibition Tests , Hemagglutination, Viral/immunology , Humans , Influenza Vaccines/adverse effects , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Male , Middle Aged , Polysorbates/administration & dosage , Squalene/administration & dosage , alpha-Tocopherol/administration & dosage
14.
J Infect Dis ; 208(9): 1514-9, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-23901079

ABSTRACT

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) antigens mediate parasite sequestration and host immune evasion. Reactivity to 21 PfEMP1 fragments on a protein microarray was measured in serum samples from Malian children aged 1-6 years and adults. Seroreactivity to PfEMP1 fragments was higher in adults than in children; intracellular conserved fragments were more widely recognized than were extracellular hypervariable fragments. Over a malaria season, children maintained this differential seroreactivity and recognized additional intracellular PfEMP1 fragments. This approach has the potential to identify conserved, seroreactive extracellular PfEMP1 domains critical for protective immunity to malaria.


Subject(s)
Antigens, Protozoan/immunology , Malaria, Falciparum/immunology , Peptide Fragments/immunology , Protozoan Proteins/immunology , Adult , Antibodies, Protozoan/blood , Case-Control Studies , Child , Child, Preschool , Humans , Infant , Malaria, Falciparum/blood , Plasmodium falciparum/immunology , Protein Array Analysis , Protein Structure, Tertiary
15.
NPJ Syst Biol Appl ; 10(1): 44, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678051

ABSTRACT

Malaria vaccine development is hampered by extensive antigenic variation and complex life stages of Plasmodium species. Vaccine development has focused on a small number of antigens, many of which were identified without utilizing systematic genome-level approaches. In this study, we implement a machine learning-based reverse vaccinology approach to predict potential new malaria vaccine candidate antigens. We assemble and analyze P. falciparum proteomic, structural, functional, immunological, genomic, and transcriptomic data, and use positive-unlabeled learning to predict potential antigens based on the properties of known antigens and remaining proteins. We prioritize candidate antigens based on model performance on reference antigens with different genetic diversity and quantify the protein properties that contribute most to identifying top candidates. Candidate antigens are characterized by gene essentiality, gene ontology, and gene expression in different life stages to inform future vaccine development. This approach provides a framework for identifying and prioritizing candidate vaccine antigens for a broad range of pathogens.


Subject(s)
Antigens, Protozoan , Malaria Vaccines , Malaria, Falciparum , Plasmodium falciparum , Plasmodium falciparum/immunology , Plasmodium falciparum/genetics , Malaria Vaccines/immunology , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Machine Learning , Humans , Proteomics/methods , Vaccine Development/methods , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Computational Biology/methods
16.
Am J Health Promot ; 38(3): 364-374, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37766398

ABSTRACT

PURPOSE: To characterize factors associated with parents' trust in messengers of COVID-19 guidance and determine whether trust in their doctors is associated with COVID-19 vaccination. DESIGN: Web-based and mailed survey (January-June 2022). SETTING: Maryland, USA. SUBJECTS: 567 parents/caregivers of public elementary and middle school students. MEASURES: Parents rated trust in 9 messengers on a 4-point scale ["not at all" (0) to "a great deal" (3)], dichotomized into low (0-1) vs high (2-3). They reported on health insurance, income, race, ethnicity, education, sex, urbanicity, political affiliation, and COVID-19 vaccination. ANALYSIS: ANOVA and t-tests were computed to compare overall trust by parent characteristics. Multivariable logistic regression was run to evaluate factors associated with high trust for each messenger. Multivariable logistic regression was used to evaluate the relationship between trust in doctors and odds of COVID-19 vaccination. RESULTS: Most trusted messengers were doctors (M = 2.65), family members (M = 1.87), and schools (M = 1.81). Parents' trust varied by racial identity, sex, urbanicity, health insurance, and political affiliation. Greater trust in their or their child's doctor was associated with greater odds of child (aOR: 2.97; 95% CI: 1.10, 7.98) and parent (aOR: 3.30; 95% CI: 1.23, 1.47) vaccination. CONCLUSION: Parent characteristics were associated with trust, and trust was linked to vaccination. Public health professionals should anticipate variability in trusted messengers to optimize uptake of public health guidance.


Subject(s)
COVID-19 , Trust , Child , Humans , COVID-19 Vaccines , COVID-19/prevention & control , Parents , Vaccination
17.
PLoS One ; 19(9): e0293787, 2024.
Article in English | MEDLINE | ID: mdl-39240796

ABSTRACT

OBJECTIVE: We aimed to investigate sociodemographic factors associated with self-reported COVID-19 infection. METHODS: The study population was a prospective multicenter cohort of adult volunteers recruited from healthcare systems located in the mid-Atlantic and southern United States. Between April 2020 and October 2021, participants completed daily online questionnaires about symptoms, exposures, and risk behaviors related to COVID-19, including self-reports of positive SARS CoV-2 detection tests and COVID-19 vaccination. Analysis of time from study enrollment to self-reported COVID-19 infection used a time-varying mixed effects Cox-proportional hazards framework. RESULTS: Overall, 1,603 of 27,214 study participants (5.9%) reported a positive COVID-19 test during the study period. The adjusted hazard ratio demonstrated lower risk for women, those with a graduate level degree, and smokers. A higher risk was observed for healthcare workers, those aged 18-34, those in rural areas, those from households where a member attends school or interacts with the public, and those who visited a health provider in the last year. CONCLUSIONS: We identified subgroups within healthcare network populations defined by age, occupational exposure, and rural location reporting higher than average rates of COVID-19 infection for our surveillance population. These subgroups should be monitored closely in future epidemics of respiratory viral diseases.


Subject(s)
COVID-19 , Self Report , Humans , Female , COVID-19/epidemiology , Male , Adult , Southeastern United States/epidemiology , Prospective Studies , Middle Aged , Adolescent , Young Adult , SARS-CoV-2/isolation & purification , Sociodemographic Factors , Aged , Risk Factors
18.
Microbiol Spectr ; : e0096024, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39162546

ABSTRACT

Plasmodium parasites, the causative organism of malaria, caused over 600,000 deaths in 2022. In Mali, Plasmodium falciparum causes the majority of malaria cases and deaths and is transmitted seasonally. Anti-malarial immunity develops slowly over repeated exposures to P. falciparum and some aspects of this immunity (e.g., antibody titers) wane during the non-transmission, dry season. Here, we sequenced RNA from 33 pediatric blood samples collected during P. falciparum infections at the beginning or end of a transmission season, and characterized the host and parasite gene expression profiles for paired, consecutive infections. We found that human gene expression changes more over the course of one transmission season than between seasons, with signatures of partial development of an adaptive immune response during one transmission season and stability in gene expression during the dry season. Additionally, we found that P. falciparum gene expression did not vary with timing during the season and remained stable both across and between seasons, despite varying human immune pressures. Our results provide insights into the dynamics of anti-malarial immune response development over short time frames that could be exploited by future vaccine and prevention efforts. IMPORTANCE: Our work seeks to understand how the immune response to Plasmodium falciparum malaria changes between infections that occur during low and high malaria transmission seasons, and highlights that immune gene expression changes more during the high transmission season. This provides important insight into the dynamics of the anti-malarial immune response that are important to characterize over these short time frames to better understand how to exploit this immune response with future vaccine efforts.

19.
Nat Commun ; 15(1): 2021, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448421

ABSTRACT

In Bandiagara, Mali, children experience on average two clinical malaria episodes per year. However, even in the same transmission area, the number of uncomplicated symptomatic infections, and their parasitemia, can vary dramatically among children. We simultaneously characterize host and parasite gene expression profiles from 136 Malian children with symptomatic falciparum malaria and examine differences in the relative proportion of immune cells and parasite stages, as well as in gene expression, associated with infection and or patient characteristics. Parasitemia explains much of the variation in host and parasite gene expression, and infections with higher parasitemia display proportionally more neutrophils and fewer T cells, suggesting parasitemia-dependent neutrophil recruitment and/or T cell extravasation to secondary lymphoid organs. The child's age also strongly correlates with variations in gene expression: Plasmodium falciparum genes associated with age suggest that older children carry more male gametocytes, while variations in host gene expression indicate a stronger innate response in younger children and stronger adaptive response in older children. These analyses highlight the variability in host responses and parasite regulation during P. falciparum symptomatic infections and emphasize the importance of considering the children's age when studying and treating malaria infections.


Subject(s)
Malaria, Falciparum , Malaria , Child , Humans , Male , Adolescent , Parasitemia/genetics , Gene Expression Profiling , Malaria, Falciparum/genetics , Cell Movement
20.
J Infect ; 89(4): 106257, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39216830

ABSTRACT

Children with hemoglobin AC or AS have decreased susceptibility to clinical malaria. Parasite variant surface antigen (VSA) presentation on the surface of infected erythrocytes is altered in erythrocytes with hemoglobin C (Hb AC) or sickle trait (Hb AS) mutations in vitro. The protective role of incomplete or altered VSA presentation against clinical malaria in individuals with Hb AC or AS is unclear. Using a high-throughput protein microarray, we sought to use serological responses to VSAs as a measure of host exposure to VSAs among Malian children with Hb AC, Hb AS, or wildtype hemoglobin (Hb AA). In uncomplicated malaria, when compared to Hb AA children, Hb AC children had significantly lower serological responses to extracellular Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP1) domains but did not differ in responses to intracellular PfEMP1 domains and other VSAs, including members of the repetitive interspersed family (RIFIN) and subtelomeric variable open reading frame (STEVOR) family. Healthy children with Hb AC and Hb AS genotypes recognized fewer extracellular PfEMP1s compared to children with Hb AA, especially CD36-binding PfEMP1s. These reduced serologic responses may reflect reduced VSA presentation or lower parasite exposure in children with Hb AC or AS and provide insights into mechanisms of protection.

SELECTION OF CITATIONS
SEARCH DETAIL