Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Virol ; 95(21): e0121621, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34379517

ABSTRACT

Retinoic acid-inducible gene I-like receptors (RLRs) are important cytosolic pattern recognition receptors (PRRs) that sense viral RNA before mounting a response leading to the activation of type I IFNs. Several viral infections induce epithelial-mesenchymal transition (EMT), even as its significance remains unclear. Here, we show that EMT or an EMT-like process is a general response to viral infections. Our studies identify a previously unknown mechanism of regulation of an important EMT-transcription factor (EMT-TF) Snail during RNA viral infections and describe its possible implication. RNA viral infections, poly(I·C) transfection, and ectopic expression of RLR components induced Snail levels, indicating that RLR pathway could regulate its expression. Detailed examination using mitochondrial antiviral signaling protein knockout (MAVS-KO) cells established that MAVS is essential in this regulation. We identified two interferon-stimulated response elements (ISREs) in the SNAI1 promoter region and demonstrated that they are important in its transcriptional activation by phosphorylated IRF3. Increasing the levels of Snail activated RLR pathway and dramatically limited replication of the RNA viruses dengue virus, Japanese encephalitis virus (JEV), and vesicular stomatitis virus, pointing to their antiviral functions. Knockdown of Snail resulted in a considerable increase in the JEV titer, validating its antiviral functions. Finally, transforming growth factor ß-mediated IFNB activation was dependent on Snail levels, confirming its important role in type I IFN activation. Thus, EMT-TF Snail is transcriptionally coregulated with type I IFN by RLRs and, in turn, promotes the RLR pathway, further strengthening the antiviral state in the cell. Our work identified an interesting mechanism of regulation of Snail that demonstrates potential coregulation of multiple innate antiviral pathways triggered by RLRs. Identification of antiviral functions of Snail also provides an opportunity to expand the sphere of RLR signaling. IMPORTANCE RLRs sense viral genomic RNA or the double-stranded RNA intermediates and trigger the activation of type I IFNs. Snail transcription factor, commonly associated with epithelial-mesenchymal transition (EMT), has been reported to facilitate EMT in several viral infections. Many of these reports are based on oncoviruses, leading to the speculation that EMT induced during infection is an important factor in the oncogenesis triggered by these infections. However, our studies reveal that EMT or EMT-like processes during viral infections have important functions in antiviral response. We have characterized a new mechanism of transcriptional regulation of Snail by IRF3 through interferon-stimulated response elements in their promoters, and this finding could have importance in nonviral contexts as well. We also identify that EMT-TF Snail promotes antiviral status of the infected cells through the RLR pathway. This study characterizes a new regulatory mechanism of activation of Snail and establishes its unidentified function in antiviral response.


Subject(s)
DEAD Box Protein 58/genetics , Gene Expression Regulation , RNA Viruses/pathogenicity , Receptors, Immunologic/genetics , Receptors, Pattern Recognition/genetics , Snail Family Transcription Factors/genetics , A549 Cells , Animals , Chlorocebus aethiops , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression , HEK293 Cells , Humans , Interferon Regulatory Factor-3/genetics , MCF-7 Cells , Male , Mice, Inbred BALB C , Signal Transduction , Vero Cells
2.
Metab Brain Dis ; 37(5): 1487-1502, 2022 06.
Article in English | MEDLINE | ID: mdl-35486209

ABSTRACT

Japanese Encephalitis Virus (JEV) is a neurotropic virus that invades Central Nervous System (CNS) and causes severe neuroinflammation. Given the abundance and the position of astrocytes in the CNS, we speculate that they might play a critical role in the process of neuroinflammation. Unfortunately, the role of astrocytes in JEV-mediated neuroinflammation has long been understated. In this study, we have attempted to assess the role of astrocyte-mediated neuroinflammation upon JEV infection. Mouse model of JEV infection, generated by intraperitoneal injection, showed severe reactive astrogliosis. To further address our hypothesis, we employed immortalized astrocytic cell line (in vitro) and primary astrocyte-enriched culture (ex vivo) as experimental models. JEV infection in the astrocytes induces proinflammatory cytokines like MCP1/CCL2 and IL6 in both ex vivo and in vitro cultures as observed from the cytometric bead array analysis. A significantly altered cytokine profile was observed using PCR analysis in in vitro and ex vivo models upon infection, with respect to control, validating our previous results. We also show that there exists a major inconsistency in the viral replication kinetics, wherein the cell line showed a robust rate of replication whereas the primary astrocyte-enriched culture showed negligibly low number of plaques, underlining the importance of the selection of appropriate experimental model system. In conclusion, we claim that astrocytes significantly contribute to JEV-mediated neuroinflammation, despite not being a CNS immune cell.


Subject(s)
Encephalitis Virus, Japanese , Encephalitis, Japanese , Animals , Astrocytes/metabolism , Cell Line , Chemokines/metabolism , Encephalitis Virus, Japanese/physiology , Encephalitis, Japanese/metabolism , Mice
3.
J Immunol ; 203(8): 2222-2238, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31527198

ABSTRACT

Microglia being the resident macrophage of brain provides neuroprotection following diverse microbial infections. Japanese encephalitis virus (JEV) invades the CNS, resulting in neuroinflammation, which turns the neuroprotective role of microglia detrimental as characterized by increased microglial activation and neuronal death. Several host factors, including microRNAs, play vital roles in regulating virus-induced inflammation. In the current study, we demonstrate that the expression of miR-301a is increased in JEV-infected microglial cells and human brain. Overexpression of miR-301a augments the JEV-induced inflammatory response, whereas inhibition of miR-301a completely reverses the effects. Mechanistically, NF-κB-repressing factor (NKRF) functioning as inhibitor of NF-κB activation is identified as a potential target of miR-301a in JEV infection. Consequently, miR-301a-mediated inhibition of NKRF enhances nuclear translocation of NF-κB, which, in turn, resulted in amplified inflammatory response. Conversely, NKRF overexpression in miR-301a-inhibited condition restores nuclear accumulation of NF-κB to a basal level. We also observed that JEV infection induces classical activation (M1) of microglia that drives the production of proinflammatory cytokines while suppressing alternative activation (M2) that could serve to dampen the inflammatory response. Furthermore, in vivo neutralization of miR-301a in mouse brain restores NKRF expression, thereby reducing inflammatory response, microglial activation, and neuronal apoptosis. Thus, our study suggests that the JEV-induced expression of miR-301a positively regulates inflammatory response by suppressing NKRF production, which might be targeted to manage viral-induced neuroinflammation.


Subject(s)
Antiviral Agents/pharmacology , Encephalitis Virus, Japanese/drug effects , Encephalitis Virus, Japanese/immunology , Encephalitis, Japanese/drug therapy , Encephalitis, Japanese/immunology , Interferon beta-1b/pharmacology , MicroRNAs/metabolism , Repressor Proteins/antagonists & inhibitors , Animals , Cells, Cultured , Encephalitis Virus, Japanese/metabolism , Encephalitis, Japanese/metabolism , Female , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Male , Mice , Mice, Inbred BALB C , MicroRNAs/genetics , Repressor Proteins/metabolism
5.
mBio ; 12(6): e0271221, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34781742

ABSTRACT

Poliomyelitis-like illness is a common clinical manifestation of neurotropic viral infections. Functional loss and death of motor neurons often lead to reduced muscle tone and paralysis, causing persistent motor sequelae among disease survivors. Despite several reports demonstrating the molecular basis of encephalopathy, the pathogenesis behind virus-induced flaccid paralysis remained largely unknown. The present study for the first time aims to elucidate the mechanism responsible for limb paralysis by studying clinical isolates of Japanese encephalitis virus (JEV) and Chandipura virus (CHPV) responsible for causing acute flaccid paralysis (AFP) in vast regions of Southeast Asia and the Indian subcontinent. An experimental model for studying virus-induced AFP was generated by intraperitoneal injection of 10-day-old BALB/c mice. Progressive decline in motor performance of infected animals was observed, with paralysis being correlated with death of motor neurons (MNs). Furthermore, we demonstrated that upon infection, MNs undergo an extrinsic apoptotic pathway in a RIG-I-dependent fashion via transcription factors pIRF-3 and pIRF-7. Both gene-silencing experiments using specific RIG-I-short interfering RNA and in vivo morpholino abrogated cellular apoptosis, validating the important role of pattern recognition receptor (PRR) RIG-I in MN death. Hence, from our experimental observations, we hypothesize that host innate response plays a significant role in deterioration of motor functioning upon neurotropic virus infections. IMPORTANCE Neurotropic viral infections are an increasingly common cause of immediate or delayed neuropsychiatric sequelae, cognitive impairment, and movement disorders or, in severe cases, death. Given the highest reported disability-adjusted life years and mortality rate worldwide, a better understanding of molecular mechanisms for underlying clinical manifestations like AFP will help in development of more effective tools for therapeutic solutions.


Subject(s)
Central Nervous System Viral Diseases/metabolism , Central Nervous System Viral Diseases/physiopathology , DEAD Box Protein 58/metabolism , Encephalitis Virus, Japanese/physiology , Motor Neurons/cytology , Myelitis/metabolism , Myelitis/physiopathology , Neuromuscular Diseases/metabolism , Neuromuscular Diseases/physiopathology , Vesiculovirus/physiology , Animals , Cell Death , Central Nervous System Viral Diseases/genetics , Central Nervous System Viral Diseases/virology , DEAD Box Protein 58/genetics , Encephalitis Virus, Japanese/genetics , Female , Humans , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/metabolism , Male , Mice , Motor Activity , Motor Neurons/metabolism , Motor Neurons/virology , Myelitis/genetics , Myelitis/virology , Neuromuscular Diseases/genetics , Neuromuscular Diseases/virology , Vesiculovirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL