Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Journal subject
Affiliation country
Publication year range
1.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 37(1): 75-79, 2020 Jan 10.
Article in Zh | MEDLINE | ID: mdl-31922603

ABSTRACT

OBJECTIVE: To assess the association of JAG2 gene single nucleotide polymorphisms with the occurrence of nonsyndromic cleft lip with or without cleft palate (NSCLP) among northwest Chinese population. METHODS: A case-control study was carried out on 301 NSCLP patients and 304 healthy controls. An iMLDR(TM) genotyping technique was used to detect three single nucleotide polymorphisms (SNPs) [rs741859 (T/C), rs11621316 (A/G) and rs1057744(C/T)] of the JAG2 gene. Allelic and genotypic frequencies and haplotypic distribution among the two groups were compared. RESULTS: A significant difference was found in the frequency of C and T alleles for rs741859 between the two groups. The CT genotype of rs741859 could significantly reduce the risk for NSCLP to 65% (P< 0.05) and the risk for cleft lip with or without cleft palate (CL/P) to 62% (P< 0.05). rs11621316 and rs1057744 are in the same linkage disequilibrium (LD) region with a high degree of linkage (γ 2> 0.8), whose distribution difference between the two groups was not statistically significant (P> 0.05). CONCLUSION: The CT genotype of the JAG2 gene rs741859 may confer a protective effect for NSCLP among northwest Chinese population.


Subject(s)
Cleft Lip , Cleft Palate , Jagged-2 Protein , Polymorphism, Single Nucleotide , Case-Control Studies , China , Cleft Lip/genetics , Cleft Palate/genetics , Gene Frequency , Genotype , Humans , Jagged-2 Protein/genetics
2.
J Agric Food Chem ; 72(1): 916-932, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38115548

ABSTRACT

Applying brassinolide (BL, a phytohormone) in combination with pyraclostrobin (Pyr, a fungicide) has shown effective disease control in field trials. However, the mechanism by which BL + Pyr control disease remains uncertain. This work compared the disease control and defense responses of three pretreatments (BL, Pyr, and BL + Pyr) in Arabidopsis thaliana. We found that BL + Pyr improved control against Pyr-sensitive Hyaloperonospora arabidopsidis and Botrytis cinerea by 19 and 17% over Pyr, respectively, and achieved 29% control against Pyr-resistant B. cinerea. Furthermore, BL + Pyr outperformed BL or Pyr in boosting transient H2O2 accumulation, and the activities of POD, APX, GST, and GPX. RNA-seq analysis revealed a more potent activation of defense genes elicited by BL + Pyr than by BL or Pyr. Overall, BL + Pyr controlled disease by integrating the elicitation of plant innate disease resistance with the fungicidal activity of Pyr.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Hydrogen Peroxide , Brassinosteroids/pharmacology , Arabidopsis Proteins/genetics , Disease Resistance , Botrytis/physiology , Plant Diseases/prevention & control , Gene Expression Regulation, Plant
3.
Front Plant Sci ; 14: 1138563, 2023.
Article in English | MEDLINE | ID: mdl-37063198

ABSTRACT

In the context of global food crisis, applying the phytohormone-brassinosteroids (BRs) in combination with the fungicide-pyraclostrobin (Pyr) was beneficial for plant quality and productivity in several field trials. However, in addition to the benefits of disease control due to the innate fungicidal activity of Pyr, it remains to be understood whether the coapplication of BL+ Pyr exerts additional growth-promoting effects. For this purpose, the effects of BL treatment, Pyr treatment, and BL+ Pyr treatment in Arabidopsis thaliana were compared. The results showed that the yield increased at a rate of 25.6% in the BL+Pyr group and 9.7% in the BL group, but no significant change was observed in the Pyr group. Furthermore, the BL+Pyr treatment increased the fresh weight of both the leaves and the inflorescences. In contrast, the Pyr and BL treatments only increased the fresh weight of leaves and inflorescences, respectively. Additionally, the BL + Pyr treatment increased the Pn, Gs, Tr, Vc, max, Jmax, VTPU, ETR, Fv'/Fm', ΦPSII, Rd, AYE and Rubisco enzyme activity by 26%, 38%, 40%, 16%, 19%, 15%, 9%, 10%, 17%, 179%, 18% and 32%, respectively. While, these paraments did not change significantly by the BL or Pyr treatments. Treatment with BL + Pyr and Pyr, rather than BL, improved the chlorophyll a and chlorophyll b contents by upregulating genes related to chlorophyll biosynthesis and downregulating genes related to chlorophyll degradation. Additionally, according to transcriptomic and metabolomic analysis, the BL+ Pyr treatment outperformed the individual BL or Pyr treatments in activating the transcription of genes involved in photosynthesis and increasing sugar accumulation. Our results first validated that the combined usage of BL and Pyr exerted striking synergistic effects on enhancing plant biomass and yield by increasing photosynthetic efficiency. These results might provide new understanding for the agricultural effects by the co-application of BL and Pyr, and it might stimulate the efforts to develop new environment-friendly replacement for Pyr to minimize the ecotoxicology of Pyr.

SELECTION OF CITATIONS
SEARCH DETAIL