Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
FASEB J ; 36(8): e22442, 2022 08.
Article in English | MEDLINE | ID: mdl-35816276

ABSTRACT

Astrocytes play many important functions in response to spinal cord injury (SCI) in an activated manner, including clearance of necrotic tissue, formation of protective barrier, maintenance of microenvironment balance, interaction with immune cells, and formation of the glial scar. More and more studies have shown that the astrocytes are heterogeneous, such as inflammatory astrocyte 1 (A1) and neuroprotective astrocyte 2 (A2) types. However, the subtypes of astrocyte resulting from SCI have not been clearly defined. In this study, using single-cell RNA sequencing, we constructed the transcriptomic profile of astrocytes from uninjured spinal cord tissue and injured tissue nearby the lesion epicenter at 0.5, 1, 3, 7, 14, 60, and 90 days after mouse hemisection spinal cord surgery. Our analysis uncovered six transcriptionally distinct astrocyte states, including Atp1b2+ , S100a4+ , Gpr84+ , C3+ /G0s2+ , GFAP+ /Tm4sf1+ , and Gss+ /Cryab+ astrocytes. We used these new signatures combined with canonical astrocyte markers to determine the distribution of morphologically and physiologically distinct astrocyte population at injured sites by immunofluorescence staining. Then we identified the dynamic evolution process of each astrocyte subtype following SCI. Finally, we also revealed the evolution of highly expressed genes in these astrocyte subtypes at different phases of SCI. Together, we provided six astrocyte subtypes at single-cell resolution following SCI. These data not only contribute to understand the heterogeneity of astrocytes during SCI but also help to find new astrocyte subtypes as a target for SCI repair.


Subject(s)
Cation Transport Proteins , Spinal Cord Injuries , Adenosine Triphosphatases , Animals , Astrocytes/pathology , Cell Adhesion Molecules, Neuronal , Gliosis/pathology , Mice , Receptors, G-Protein-Coupled , Spinal Cord/pathology , Spinal Cord Injuries/genetics , Spinal Cord Injuries/pathology
2.
J Neurosci ; 41(23): 4976-4990, 2021 06 09.
Article in English | MEDLINE | ID: mdl-33972402

ABSTRACT

Mutations on γ-secretase subunits are associated with neurologic diseases. Whereas the role of γ-secretase in neurogenesis has been intensively studied, little is known about its role in astrogliogenesis. Recent evidence has demonstrated that astrocytes can be generated from oligodendrocyte precursor cells (OPCs). However, it is not well understood what mechanism may control OPCs to differentiate into astrocytes. To address the above questions, we generated two independent lines of oligodendrocyte lineage-specific presenilin enhancer 2 (Pen-2) conditional KO mice. Both male and female mice were used. Here we demonstrate that conditional inactivation of Pen-2 mediated by Olig1-Cre or NG2-CreERT2 causes enhanced generation of astrocytes. Lineage-tracing experiments indicate that abnormally generated astrocytes are derived from Cre-expressing OPCs in the CNS in Pen-2 conditional KO mice. Mechanistic analysis reveals that deletion of Pen-2 inhibits the Notch signaling to upregulate signal transducer and activator of transcription 3, which triggers activation of GFAP to promote astrocyte differentiation. Together, these novel findings indicate that Pen-2 regulates the specification of astrocytes from OPCs through the signal transducer and activator of transcription 3 signaling.SIGNIFICANCE STATEMENT Astrocytes and oligodendrocyte (OLs) play critical roles in the brain. Recent evidence has demonstrated that astrocytes can be generated from OL precursor cells (OPCs). However, it remains poorly understood what mechanism governs the differentiation of OPCs into astrocytes. In this study, we took advantage of OL lineage cells specific presenilin enhancer 2 (Pen-2) conditional KO mice. We show that deletion of Pen-2 leads to dramatically enhanced astrocyte differentiation from OPCs in the CNS. Mechanistic analysis reveals that deletion of Pen-2 inhibits Hes1 and activates signal transducer and activator of transcription 3 to trigger GFAP activation which promotes astrocyte differentiation. Overall, this study identifies a novel function of Pen-2 in astrogliogenesis from OPCs.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Astrocytes/cytology , Neurogenesis/physiology , Oligodendrocyte Precursor Cells/cytology , Animals , Cell Differentiation/physiology , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
3.
J Neurosci ; 41(39): 8163-8180, 2021 09 29.
Article in English | MEDLINE | ID: mdl-34385359

ABSTRACT

Sox10 is a well known factor to control oligodendrocyte (OL) differentiation, and its expression is regulated by Olig2. As an important protein kinase, Akt has been implicated in diseases with white matter abnormalities. To study whether and how Akt may regulate OL development, we generated OL lineage cell-specific Akt1/Akt2/Akt3 triple conditional knock-out (Akt cTKO) mice. Both male and female mice were used. These mutants exhibit a complete loss of mature OLs and unchanged apoptotic cell death in the CNS. We show that the deletion of Akt three isoforms causes downregulation of Sox10 and decreased levels of phosphorylated FoxO1 in the brain. In vitro analysis reveals that the expression of FoxO1 with mutations on phosphorylation sites for Akt significantly represses the Sox10 promoter activity, suggesting that phosphorylation of FoxO1 by Akt is important for Sox10 expression. We further demonstrate that mutant FoxO1 without Akt phosphorylation epitopes is enriched in the Sox10 promoter. Together, this study identifies a novel FoxO1 phosphorylation-dependent mechanism for Sox10 expression and OL differentiation.SIGNIFICANCE STATEMENT Dysfunction of Akt is associated with white matter diseases including the agenesis of the corpus callosum. However, it remains unknown whether Akt plays an important role in oligodendrocyte differentiation. To address this question, we generated oligodendrocyte lineage cell-specific Akt1/Akt2/Akt3 triple-conditional knock-out mice. Akt mutants exhibit deficient white matter development, loss of mature oligodendrocytes, absence of myelination, and unchanged apoptotic cell death in the CNS. We demonstrate that deletion of Akt three isoforms leads to downregulation of Sox10, and that phosphorylation of FoxO1 by Akt is critical for Sox10 expression. Together, these findings reveal a novel mechanism to regulate Sox10 expression. This study may provide insights into molecular mechanisms for neurodevelopmental diseases caused by dysfunction of protein kinases.


Subject(s)
Brain/metabolism , Cell Differentiation/physiology , Oligodendroglia/cytology , Proto-Oncogene Proteins c-akt/metabolism , SOXE Transcription Factors/metabolism , Spinal Cord/metabolism , Animals , Apoptosis/physiology , Female , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Male , Mice , Mice, Knockout , Oligodendroglia/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/genetics , SOXE Transcription Factors/genetics , White Matter/metabolism
4.
CNS Neurosci Ther ; 27(2): 174-185, 2021 02.
Article in English | MEDLINE | ID: mdl-32961023

ABSTRACT

INTRODUCTION: Presenilin enhancer2 (Pen-2) is an essential subunit of γ-secretase, which is a key protease responsible for the cleavage of amyloid precursor protein (APP) and Notch. Mutations on Pen-2 cause familial Alzheimer disease (AD). However, it remains unknown whether Pen-2 regulates neuronal survival and neuroinflammation in the adult brain. METHODS: Forebrain neuron-specific Pen-2 conditional knockout (Pen-2 cKO) mice were generated for this study. Pen-2 cKO mice expressing Notch1 intracellular domain (NICD) conditionally in cortical neurons were also generated. RESULTS: Loss of Pen-2 causes astrogliosis followed by age-dependent cortical atrophy and neuronal loss. Loss of Pen-2 results in microgliosis and enhanced inflammatory responses in the cortex. Expression of NICD in Pen-2 cKO cortices ameliorates neither neurodegeneration nor neuroinflammation. CONCLUSIONS: Pen-2 is required for neuronal survival in the adult cerebral cortex. The Notch signaling may not be involved in neurodegeneration caused by loss of Pen-2.


Subject(s)
Aging/metabolism , Amyloid Precursor Protein Secretases/deficiency , Cerebral Cortex/metabolism , Gliosis/metabolism , Neurons/metabolism , Receptors, Notch/deficiency , Aging/genetics , Aging/pathology , Amyloid Precursor Protein Secretases/genetics , Animals , Atrophy , Cerebral Cortex/pathology , Disease Progression , Female , Gene Deletion , Gliosis/genetics , Gliosis/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neurons/pathology , Receptors, Notch/genetics
5.
Biochem Biophys Rep ; 24: 100817, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33015377

ABSTRACT

Prolonged neuroinflammation is a driving force for neurodegenerative disease, and agents against inflammatory responses are regarded as potential treatment strategies. Here we aimed to evaluate the prevention effects on gliosis by dexamethasone (DEX), an anti-inflammation drug. We used DEX to treat the nicastrin conditional knockout (cKO) mouse, a neurodegenerative mouse model. DEX (10 mg/kg) was given to 2.5-month-old nicastrin cKO mice, which have not started to display neurodegeneration and gliosis, for 2 months. Immunohistochemistry (IHC) and Western blotting techniques were used to detect changes in neuroinflammatory responses. We found that activation of glial fibrillary acidic protein (GFAP) positive or ionized calcium binding adapter molecule1 (Iba1) positive cells was not inhibited in nicastrin cKO mice treated with DEX as compared to those treated with saline. These data suggest that DEX does not prevent or ameliorate gliosis in a neurodegenerative mouse model when given prior to neuronal or synaptic loss.

SELECTION OF CITATIONS
SEARCH DETAIL