Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Article in English | MEDLINE | ID: mdl-34670838

ABSTRACT

To form synaptic connections and store information, neurons continuously remodel their proteomes. The impressive length of dendrites and axons imposes logistical challenges to maintain synaptic proteins at locations remote from the transcription source (the nucleus). The discovery of thousands of messenger RNAs (mRNAs) near synapses suggested that neurons overcome distance and gain autonomy by producing proteins locally. It is not generally known, however, if, how, and when localized mRNAs are translated into protein. To investigate the translational landscape in neuronal subregions, we performed simultaneous RNA sequencing (RNA-seq) and ribosome sequencing (Ribo-seq) from microdissected rodent brain slices to identify and quantify the transcriptome and translatome in cell bodies (somata) as well as dendrites and axons (neuropil). Thousands of transcripts were differentially translated between somatic and synaptic regions, with many scaffold and signaling molecules displaying increased translation levels in the neuropil. Most translational changes between compartments could be accounted for by differences in RNA abundance. Pervasive translational regulation was observed in both somata and neuropil influenced by specific mRNA features (e.g., untranslated region [UTR] length, RNA-binding protein [RBP] motifs, and upstream open reading frames [uORFs]). For over 800 mRNAs, the dominant source of translation was the neuropil. We constructed a searchable and interactive database for exploring mRNA transcripts and their translation levels in the somata and neuropil [MPI Brain Research, The mRNA translation landscape in the synaptic neuropil. https://public.brain.mpg.de/dashapps/localseq/ Accessed 5 October 2021]. Overall, our findings emphasize the substantial contribution of local translation to maintaining synaptic protein levels and indicate that on-site translational control is an important mechanism to control synaptic strength.


Subject(s)
Axons/metabolism , Cell Body/metabolism , Dendrites/metabolism , Neurons/metabolism , Protein Biosynthesis , Sequence Analysis, RNA/methods , Animals , Proteome , RNA, Messenger/genetics , Transcriptome
2.
Alzheimers Dement ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090679

ABSTRACT

INTRODUCTION: Triggering receptor expressed on myeloid cells 2 (TREM2) agonists are being clinically evaluated as disease-modifying therapeutics for Alzheimer's disease. Clinically translatable pharmacodynamic (PD) biomarkers are needed to confirm drug activity and select the appropriate therapeutic dose in clinical trials. METHODS: We conducted multi-omic analyses on paired non-human primate brain and cerebrospinal fluid (CSF), and stimulation of human induced pluripotent stem cell-derived microglia cultures after TREM2 agonist treatment, followed by validation of candidate fluid PD biomarkers using immunoassays. We immunostained microglia to characterize proliferation and clustering. RESULTS: We report CSF soluble TREM2 (sTREM2) and CSF chitinase-3-like protein 1 (CHI3L1/YKL-40) as PD biomarkers for the TREM2 agonist hPara.09. The respective reduction of sTREM2 and elevation of CHI3L1 in brain and CSF after TREM2 agonist treatment correlated with transient microglia proliferation and clustering. DISCUSSION: CSF CHI3L1 and sTREM2 reflect microglial TREM2 agonism and can be used as clinical PD biomarkers to monitor TREM2 activity in the brain. HIGHLIGHTS: CSF soluble triggering receptor expressed on myeloid cells 2 (sTREM2) reflects brain target engagement for a novel TREM2 agonist, hPara.09. CSF chitinase-3-like protein 1 reflects microglial TREM2 agonism. Both can be used as clinical fluid biomarkers to monitor TREM2 activity in brain.

3.
Nat Methods ; 16(12): 1332, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31653975

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Nat Methods ; 16(8): 699-702, 2019 08.
Article in English | MEDLINE | ID: mdl-31308551

ABSTRACT

Chemical inhibitors have revealed requirements for protein synthesis that drive cellular plasticity. We developed a genetically encodable protein synthesis inhibitor (gePSI) to achieve cell-type-specific temporal control of protein synthesis. Controlled expression of the gePSI in neurons or glia resulted in rapid, potent and reversible cell-autonomous inhibition of protein synthesis. Moreover, gePSI expression in a single neuron blocked the structural plasticity induced by single-synapse stimulation.


Subject(s)
Genetic Engineering , Hippocampus/metabolism , Neuronal Plasticity/drug effects , Neurons/metabolism , Protein Biosynthesis , Protein Synthesis Inhibitors/pharmacology , Synapses/metabolism , Animals , Cells, Cultured , HeLa Cells , Hippocampus/cytology , Hippocampus/drug effects , Humans , Neuroglia/cytology , Neuroglia/drug effects , Neuroglia/metabolism , Neurons/cytology , Neurons/drug effects , Protein Synthesis Inhibitors/chemistry , Rats , Synapses/drug effects
5.
J Neurosci ; 35(10): 4113-30, 2015 Mar 11.
Article in English | MEDLINE | ID: mdl-25762659

ABSTRACT

Ribosomal protein S6 (rpS6), a component of the 40S ribosomal subunit, is phosphorylated on several residues in response to numerous stimuli. Although commonly used as a marker for neuronal activity, its upstream mechanisms of regulation are poorly studied and its role in protein synthesis remains largely debated. Here, we demonstrate that the psychostimulant d-amphetamine (d-amph) markedly increases rpS6 phosphorylation at Ser235/236 sites in both crude and synaptoneurosomal preparations of the mouse striatum. This effect occurs selectively in D1R-expressing medium-sized spiny neurons (MSNs) and requires the cAMP/PKA/DARPP-32/PP-1 cascade, whereas it is independent of mTORC1/p70S6K, PKC, and ERK signaling. By developing a novel assay to label nascent peptidic chains, we show that the rpS6 phosphorylation induced in striatonigral MSNs by d-amph, as well as in striatopallidal MSNs by the antipsychotic haloperidol or in both subtypes by papaverine, is not correlated with the translation of global or 5' terminal oligopyrimidine tract mRNAs. Together, these results provide novel mechanistic insights into the in vivo regulation of the post-translational modification of rpS6 in the striatum and point out the lack of a relationship between PKA-dependent rpS6 phosphorylation and translation efficiency.


Subject(s)
Corpus Striatum/cytology , Cyclic AMP-Dependent Protein Kinases/metabolism , Neural Pathways/physiology , Neurons/metabolism , Ribosomal Protein S6/metabolism , Substantia Nigra/cytology , Animals , Corpus Striatum/drug effects , Dopamine and cAMP-Regulated Phosphoprotein 32/genetics , Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism , Female , GTP-Binding Protein alpha Subunits/genetics , GTP-Binding Protein alpha Subunits/metabolism , Harringtonines/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neural Pathways/drug effects , Neurons/drug effects , Neurons/ultrastructure , Phosphorylation/drug effects , Phosphorylation/genetics , Protein Synthesis Inhibitors/pharmacology , Protein Transport/drug effects , Protein Transport/genetics , Puromycin/pharmacology , Receptors, Dopamine D1/genetics , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Substantia Nigra/drug effects , Synaptosomes/drug effects , Synaptosomes/metabolism
6.
Hippocampus ; 25(7): 858-75, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25545461

ABSTRACT

Increasing evidences suggest that dopamine facilitates the encoding of novel memories by the hippocampus. However, the role of dopamine D2 receptors (D2R) in such regulations remains elusive due to the lack of the precise identification of hippocampal D2R-expressing cells. To address this issue, mice expressing the ribosomal protein Rpl22 tagged with the hemagglutinin (HA) epitope were crossed with Drd2-Cre mice allowing the selective expression of HA in D2R-containing cells (Drd2-Cre:RiboTag mice). This new transgenic model revealed a more widespread pattern of D2R-expressing cells identified by HA immunoreactivity than the one initially reported in Drd2-EGFP mice, in which the hilar mossy cells were the main neuronal population detectable. In Drd2-Cre:RiboTag mice, scattered HA/GAD67-positive neurons were detected throughout the CA1/CA3 subfields, being preferentially localized in stratum oriens and stratum lacunosum-moleculare. At the cellular level, HA-labeled cells located in CA1/CA3 subfields co-localized with calcium-binding proteins (parvalbumin, calbindin, and calretinin), neuropeptides (neuropeptide Y, somatostatin), and other markers (neuronal nitric oxide synthase, mGluR1α, reelin, coupTFII, and potassium channel-interacting protein 1). These results suggest that in addition to the glutamatergic hilar mossy cells, D2R-expressing cells constitute a subpopulation of GABAergic hippocampal interneurons.


Subject(s)
Gene Expression Regulation/genetics , Hippocampus/cytology , Neurons/metabolism , Receptors, Dopamine D2/metabolism , Animals , Calbindin 2/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Channelrhodopsins , Glutamate Decarboxylase/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Confocal , Nerve Tissue Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Receptors, Dopamine D2/genetics , Reelin Protein , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism
7.
J Alzheimers Dis ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39213066

ABSTRACT

Background: Studies comparing cerebrospinal fluid (CSF) and plasma complement proteins in Alzheimer's disease (AD) patients versus healthy controls (HC) have yielded inconsistent results. Discrepancies in the preanalytical sample handling could contribute to the heterogeneity in the reported findings. Objective: Using qualified immunoassays, we aimed at assessing the impact of preanalytical procedures on complement proteins in blood and CSF from AD patients and HCs. Methods: We supplemented HC and AD CSF/plasma with complement stabilizers and measured the complement proteins C4a, C4, C3a, C3, Factor Bb and Factor B by immunoassay. We tested the impact of freeze-thaw (FT) cycles on fluid complement proteins. Results: Most complement proteins were mildly impacted by FT cycles in plasma but not CSF, except for C3a which displayed greater sensitivity to FTs in CSF than in plasma. In CSF, the effect of FTs on C3a was reduced but not prevented by the supplementation with EDTA (±Futhan). Conclusions: Our findings provide recommendations for CSF/plasma sample handling to ensure robust and reproducible complement biomarker analyses in AD.

8.
Science ; 367(6477)2020 01 31.
Article in English | MEDLINE | ID: mdl-32001627

ABSTRACT

To accommodate their complex morphology, neurons localize messenger RNAs (mRNAs) and ribosomes near synapses to produce proteins locally. However, a relative paucity of polysomes (considered the active sites of translation) detected in electron micrographs of neuronal processes has suggested a limited capacity for local protein synthesis. In this study, we used polysome profiling together with ribosome footprinting of microdissected rodent synaptic regions to reveal a surprisingly high number of dendritic and/or axonal transcripts preferentially associated with monosomes (single ribosomes). Furthermore, the neuronal monosomes were in the process of active protein synthesis. Most mRNAs showed a similar translational status in the cell bodies and neurites, but some transcripts exhibited differential ribosome occupancy in the compartments. Monosome-preferring transcripts often encoded high-abundance synaptic proteins. Thus, monosome translation contributes to the local neuronal proteome.


Subject(s)
Neuropil/metabolism , Protein Biosynthesis , RNA, Messenger/metabolism , Ribosomes/metabolism , Synapses/metabolism , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Polyribosomes/metabolism , Proteome/metabolism , RNA, Messenger/genetics
9.
Adv Protein Chem Struct Biol ; 116: 375-396, 2019.
Article in English | MEDLINE | ID: mdl-31036297

ABSTRACT

The striatum integrates dopamine-mediated reward signals to generate appropriate behavior in response to glutamate-mediated sensory cues. Such associative learning relies on enduring neural plasticity in striatal GABAergic spiny projection neurons which, when altered, can lead to the development of a wide variety of pathological states. Considerable progress has been made in our understanding of the intracellular signaling mechanisms in dopamine-related behaviors and pathologies. Through the prism of the regulation of histone H3 and ribosomal protein S6 phosphorylation, we review how dopamine-mediated signaling events regulate gene transcription and mRNA translation. Particularly, we focus on the intracellular cascades controlling these phosphorylations downstream of the modulation of dopamine receptors by psychostimulants, antipsychotics and l-DOPA. Finally, we highlight the importance to precisely determine in which neuronal populations these signaling events occur in order to understand how they participate in remodeling neural circuits and altering dopamine-related behaviors.


Subject(s)
Corpus Striatum/metabolism , Dopamine/metabolism , Signal Transduction , Animals , Histones/metabolism , Humans , Neurons/metabolism , Phosphorylation , Ribosomal Protein S6/metabolism
10.
Curr Opin Neurobiol ; 57: 141-148, 2019 08.
Article in English | MEDLINE | ID: mdl-30861464

ABSTRACT

Neurons exhibit a unique degree of spatial compartmentalization and are able to maintain and remodel their proteomes independently from the cell body. While much effort has been devoted to understanding the capacity and role for local protein synthesis in dendrites and spines, local mRNA translation in mature axons, projecting over distances up to a meter, has received much less attention. Also, little is known about the spatio-temporal dynamics of axonal and dendritic gene expression as function of mRNA abundance, protein synthesis and degradation. Here, we summarize key recent findings that have shaped our knowledge of the precise location of local protein production and discuss unique strategies used by neurons to shape presynaptic and postsynaptic proteomes.


Subject(s)
Axons , Dendrites , RNA, Messenger
11.
Neuron ; 98(3): 495-511.e6, 2018 05 02.
Article in English | MEDLINE | ID: mdl-29656876

ABSTRACT

Neurons localize mRNAs near synapses where their translation can be regulated by synaptic demand and activity. Differences in the 3' UTRs of mRNAs can change their localization, stability, and translational regulation. Using 3' end RNA sequencing of microdissected rat brain slices, we discovered a huge diversity in mRNA 3' UTRs, with many transcripts showing enrichment for a particular 3' UTR isoform in either somata or the neuropil. The 3' UTR isoforms of localized transcripts are significantly longer than the 3' UTRs of non-localized transcripts and often code for proteins associated with axons, dendrites, and synapses. Surprisingly, long 3' UTRs add not only new, but also duplicate regulatory elements. The neuropil-enriched 3' UTR isoforms have significantly longer half-lives than somata-enriched isoforms. Finally, the 3' UTR isoforms can be significantly altered by enhanced activity. Most of the 3' UTR plasticity is transcription dependent, but intriguing examples of changes that are consistent with altered stability, trafficking between compartments, or local "remodeling" remain.


Subject(s)
3' Untranslated Regions/physiology , Neuronal Plasticity/physiology , Neurons/metabolism , RNA, Messenger/metabolism , Animals , Animals, Newborn , Cells, Cultured , HEK293 Cells , Hippocampus/chemistry , Hippocampus/metabolism , Humans , Male , Neurons/chemistry , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Stability , RNA, Messenger/analysis , Rats , Rats, Sprague-Dawley
12.
Front Mol Neurosci ; 10: 419, 2017.
Article in English | MEDLINE | ID: mdl-29311811

ABSTRACT

The phosphorylation of the ribosomal protein S6 (rpS6) is widely used to track neuronal activity. Although it is generally assumed that rpS6 phosphorylation has a stimulatory effect on global protein synthesis in neurons, its exact biological function remains unknown. By using a phospho-deficient rpS6 knockin mouse model, we directly tested the role of phospho-rpS6 in mRNA translation, plasticity and behavior. The analysis of multiple brain areas shows for the first time that, in neurons, phospho-rpS6 is dispensable for overall protein synthesis. Instead, we found that phospho-rpS6 controls the translation of a subset of mRNAs in a specific brain region, the nucleus accumbens (Acb), but not in the dorsal striatum. We further show that rpS6 phospho-mutant mice display altered long-term potentiation (LTP) in the Acb and enhanced novelty-induced locomotion. Collectively, our findings suggest a previously unappreciated role of phospho-rpS6 in the physiology of the Acb, through the translation of a selective subclass of mRNAs, rather than the regulation of general protein synthesis.

13.
Front Mol Neurosci ; 9: 165, 2016.
Article in English | MEDLINE | ID: mdl-28119566

ABSTRACT

Repeated psychostimulant exposure induces persistent gene expression modifications that contribute to enduring changes in striatal GABAergic spiny projecting neurons (SPNs). However, it remains unclear whether changes in the control of mRNA translation are required for the establishment of these durable modifications. Here we report that repeated exposure to D-amphetamine decreases global striatal mRNA translation. This effect is paralleled by an enhanced phosphorylation of the translation factors, eIF2α and eEF2, and by the concomitant increased translation of a subset of mRNAs, among which the mRNA encoding for the activity regulated cytoskeleton-associated protein, also known as activity regulated gene 3.1 (Arc/Arg3.1). The enrichment of Arc/Arg3.1 mRNA in the polysomal fraction is accompanied by a robust increase of Arc/Arg3.1 protein levels within the striatum. Immunofluorescence analysis revealed that this increase occurred preferentially in D1R-expressing SPNs localized in striosome compartments. Our results suggest that the decreased global protein synthesis following repeated exposure to D-amphetamine favors the translation of a specific subset of mRNAs in the striatum.

14.
Front Mol Neurosci ; 8: 75, 2015.
Article in English | MEDLINE | ID: mdl-26733799

ABSTRACT

Since the discovery of the phosphorylation of the 40S ribosomal protein S6 (rpS6) about four decades ago, much effort has been made to uncover the molecular mechanisms underlying the regulation of this post-translational modification. In the field of neuroscience, rpS6 phosphorylation is commonly used as a readout of the mammalian target of rapamycin complex 1 signaling activation or as a marker for neuronal activity. Nevertheless, its biological role in neurons still remains puzzling. Here we review the pharmacological and physiological stimuli regulating this modification in the nervous system as well as the pathways that transduce these signals into rpS6 phosphorylation. Altered rpS6 phosphorylation observed in various genetic and pathophysiological mouse models is also discussed. Finally, we examine the current state of knowledge on the physiological role of this post-translational modification and highlight the questions that remain to be addressed.

15.
Front Behav Neurosci ; 7: 152, 2013.
Article in English | MEDLINE | ID: mdl-24187535

ABSTRACT

The circadian clock comprises a set of genes involved in cell-autonomous transcriptional feedback loops that orchestrate the expression of a range of downstream genes, driving circadian patterns of behavior. Cognitive dysfunction, mood disorders, anxiety disorders, and substance abuse disorders have been associated with disruptions in circadian rhythm and circadian clock genes, but the causal relationship of these associations is still poorly understood. In the present study, we investigate the effect of genetic disruption of the circadian clock, through deletion of both paralogs of the core gene cryptochrome (Cry1 and Cry2). Mice lacking Cry1 and Cry2 (Cry1(-/-)Cry2(-/-) ) displayed attenuated dark phase and novelty-induced locomotor activity. Moreover, they showed impaired recognition memory but intact fear memory. Depression-related behaviors in the forced swim test or sucrose preference tests were unaffected but Cry1(-/-)Cry2(-/-) mice displayed increased anxiety in the open field and elevated plus maze tests. Finally, hyperlocomotion and striatal phosphorylation of extracellular signal-regulated kinase (ERK) induced by a single cocaine administration are strongly reduced in Cry1(-/-)Cry2(-/-) mice. Interestingly, only some behavioral measures were affected in mice lacking either Cry1 or Cry2. Notably, recognition memory was impaired in both Cry1(-/-)Cry2(+/+) and Cry1(+/+)Cry2(-/-) mice. Moreover, we further observed elevated anxiety in Cry1(-/-)Cry2(+/+) and Cry1(+/+)Cry2(-/-) mice. Our data indicate that beyond their role in the control of circadian rhythm, cryptochrome genes have a direct influence in cognitive function, anxiety-related behaviors and sensitivity to psychostimulant drugs.

SELECTION OF CITATIONS
SEARCH DETAIL