Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Eur J Hum Genet ; 32(2): 238-242, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38012313

ABSTRACT

A recent report described a nonsense variant simultaneously creating a donor splice site, resulting in a truncated but functional protein. To explore the generalizability of this unique mechanism, we annotated >115,000 nonsense variants using SpliceAI. Between 0.61% (donor gain delta score >0.8, for high precision) and 2.57% (>0.2, for high sensitivity) of nonsense variants were predicted to create new donor splice sites at or upstream of the stop codon. These variants were less likely than other nonsense variants in the same genes to be classified as pathogenic/likely pathogenic in ClinVar (p < 0.001). Up to 1 in 175 nonsense variants were predicted to result in small in-frame deletions and loss-of-function evasion through this "manufactured splice rescue" mechanism. We urge caution when interpreting nonsense variants where manufactured splice rescue is a strong possibility and correlation with phenotype is challenging, as will often be the case with secondary findings and newborn genomic screening programs.


Subject(s)
Codon, Nonsense , Genomics , Infant, Newborn , Humans , Codon, Terminator , Phenotype , RNA Splice Sites/genetics
2.
Cell Rep ; 43(7): 114417, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38980795

ABSTRACT

The ability to sense and respond to osmotic fluctuations is critical for the maintenance of cellular integrity. We used gene co-essentiality analysis to identify an unappreciated relationship between TSC22D2, WNK1, and NRBP1 in regulating cell volume homeostasis. All of these genes have paralogs and are functionally buffered for osmo-sensing and cell volume control. Within seconds of hyperosmotic stress, TSC22D, WNK, and NRBP family members physically associate into biomolecular condensates, a process that is dependent on intrinsically disordered regions (IDRs). A close examination of these protein families across metazoans revealed that TSC22D genes evolved alongside a domain in NRBPs that specifically binds to TSC22D proteins, which we have termed NbrT (NRBP binding region with TSC22D), and this co-evolution is accompanied by rapid IDR length expansion in WNK-family kinases. Our study reveals that TSC22D, WNK, and NRBP genes evolved in metazoans to co-regulate rapid cell volume changes in response to osmolarity.


Subject(s)
Cell Size , WNK Lysine-Deficient Protein Kinase 1 , Humans , Animals , WNK Lysine-Deficient Protein Kinase 1/metabolism , WNK Lysine-Deficient Protein Kinase 1/genetics , Evolution, Molecular , HEK293 Cells , Protein Binding , Multigene Family , Osmotic Pressure
SELECTION OF CITATIONS
SEARCH DETAIL