Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Macromol Rapid Commun ; 45(3): e2300527, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37990851

ABSTRACT

Catalytic hydrosilylation is one of the important synthetic approaches to prepare functional organosilicon polymers. Herein, a functional silicon copolymer is constructed by polyhydrosilylation reaction between a novel 3,7-bis(dimethyl silane)-10-(2-ethylhexyl)-10H-phenothiazine monomer and a neutral tetrapyrrolic macrocycle, namely, 5,5,10,15,15,20-hexamethyl-10α, 20α-bis(4-[ethynylphenyl]) calix[4]pyrrole. The as-constructed copolymer (Mn  = 9609, PDI = 2.2) is investigated as an extractant for organic anions as their tetrabutylammonium salts under interfacial aqueous-organic (water-chloroform) conditions. In this context, a distinctive naked-eye colorimetric as well as fluorescence detection method is developed based on anion-directed hydrogen-bonding interactions. This kind of color/fluorescence monitoring serves as a handy tool for rapid screening of anion extraction processes. The copolymer exhibits high selectivity toward extraction of chloride anion. This study augments the field of polycarbosilanes, poly(silylenevinylene)s in particular, allowing access to a new application window that can be further advanced with good grace in near future.


Subject(s)
Polymers , Pyrroles , Anions , Hydrogen Bonding , Halogens
2.
Molecules ; 21(12)2016 Dec 02.
Article in English | MEDLINE | ID: mdl-27918453

ABSTRACT

'Nanozymes', a term coined by Scrimin, Pasquato, and co-workers to describe nanomaterials with enzyme-like characteristics, represent an exciting and emerging research area in the field of artificial enzymes. Indubitably, the last decade has witnessed substantial advancements in the design of a variety of functional nanoscale materials, including metal oxides and carbon-based nanomaterials, which mimic the structures and functions of naturally occurring enzymes. Among these, carbon nanodots (C-dots) or carbon quantum dots (CQDs) offer huge potential due to their unique properties as compared to natural enzymes and/or classical artificial enzymes. In this mini review, we discuss the peroxidase-like catalytic activities of C-dots and their applications in biosensing. The scope intends to cover not only the C-dots but also graphene quantum dots (GQDs), doped C-dots/GQDs, carbon nitride dots, and C-dots/GQDs nanocomposites. Nevertheless, this mini review is designed to be illustrative, not comprehensive.


Subject(s)
Biomimetic Materials/chemistry , Biosensing Techniques/methods , Carbon/chemistry , Nanocomposites/chemistry , Quantum Dots/chemistry , Biosensing Techniques/instrumentation , Graphite/chemistry , Peroxidase/chemistry
3.
Molecules ; 20(8): 14155-90, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26248071

ABSTRACT

"Artificial enzymes", a term coined by Breslow for enzyme mimics is an exciting and promising branch of biomimetic chemistry aiming to imitate the general and essential principles of natural enzymes using a variety of alternative materials including heterogeneous catalysts. Peroxidase enzymes represent a large family of oxidoreductases that typically catalyze biological reactions with high substrate affinity and specificity under relatively mild conditions and thus offer a wide range of practical applications in many areas of science. The increasing understanding of general principles as well as intrinsic drawbacks such as low operational stability, high cost, difficulty in purification and storage, and sensitivity of catalytic activity towards atmospheric conditions of peroxidases has triggered a dynamic field in nanotechnology, biochemical, and material science that aims at joining the better of three worlds by combining the concept adapted from nature with the processability of catalytically active graphene-based nanomaterials (G-NMs) as excellent peroxidase mimetic catalysts. This comprehensive review discusses an up-to-date synthesis, kinetics, mechanisms, and biosensing applications of a variety of G-NMs that have been explored as promising catalysts to mimic natural peroxidases.


Subject(s)
Biomimetic Materials/chemistry , Biosensing Techniques/methods , Graphite/chemistry , Nanostructures/chemistry , Peroxidase/metabolism , Catalysis
4.
Molecules ; 19(9): 14582-614, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25225721

ABSTRACT

Acid catalysis is quite prevalent and probably one of the most routine operations in both industrial processes and research laboratories worldwide. Recently, "graphene", a two dimensional single-layer carbon sheet with hexagonal packed lattice structure, imitative of nanomaterials, has shown great potential as alternative and eco-friendly solid carbocatalyst for a variety of acid-catalyzed reactions. Owing to their exceptional physical, chemical, and mechanical properties, graphene-based nanomaterials (G-NMs) offer highly stable Brønsted acidic sites, high mass transfer, relatively large surface areas, water tolerant character, and convenient recoverability as well as recyclability, whilst retaining high activity in acid-catalyzed chemical reactions. This comprehensive review focuses on the chemistry of G-NMs, including their synthesis, characterization, properties, functionalization, and up-to-date applications in heterogeneous acid catalysis. In line with this, in certain instances readers may find herein some criticisms that should be taken as constructive and would be of value in understanding the scope and limitations of current approaches utilizing graphene and its derivatives for the same.


Subject(s)
Catalysis , Graphite/chemistry , Nanostructures/chemistry , Acids/chemistry , Graphite/chemical synthesis , Green Chemistry Technology
5.
Curr Protein Pept Sci ; 25(3): 226-243, 2024.
Article in English | MEDLINE | ID: mdl-37921168

ABSTRACT

Bioconjugation techniques have emerged as powerful tools for enhancing the stability and targeting efficiency of protein and peptide therapeutics. This review provides a comprehensive analysis of the various bioconjugation strategies employed in the field. The introduction highlights the significance of bioconjugation techniques in addressing stability and targeting challenges associated with protein and peptide-based drugs. Chemical and enzymatic bioconjugation methods are discussed, along with crosslinking strategies for covalent attachment and site-specific conjugation approaches. The role of bioconjugation in improving stability profiles is explored, showcasing case studies that demonstrate successful stability enhancement. Furthermore, bioconjugation techniques for ligand attachment and targeting are presented, accompanied by examples of targeted protein and peptide therapeutics. The review also covers bioconjugation approaches for prolonging circulation and controlled release, focusing on strategies to extend half-life, reduce clearance, and design-controlled release systems. Analytical characterization techniques for bioconjugates, including the evaluation of conjugation efficiency, stability, and assessment of biological activity and targeting efficiency, are thoroughly examined. In vivo considerations and clinical applications of bioconjugated protein and peptide therapeutics, including pharmacokinetic and pharmacodynamic considerations, as well as preclinical and clinical developments, are discussed. Finally, the review concludes with an overview of future perspectives, emphasizing the potential for novel conjugation methods and advanced targeting strategies to further enhance the stability and targeting efficiency of protein and peptide therapeutics.


Subject(s)
Peptides , Proteins , Delayed-Action Preparations , Peptides/pharmacology , Peptides/therapeutic use , Proteins/therapeutic use
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 251: 119456, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33485245

ABSTRACT

Hydrazine or hydrazine hydrate (N2H4·H2O) is a potential neurotoxin and has several mutagenic effects in physiological systems. Therefore, the development of synthetic organic probes that are sensitive and selective to hydrazine is of tremendous importance. Unfortunately, however, the hydrazine-selective sensing probes that rely upon minimum usage of the organic solvents (≤5%, v/v) are still rarer. In this work, an ion-pair-like mono acetate derivative of bromophenol blue has been developed as a fairly selective ratiometric probe for the naked-eye recognition of hydrazine in a solution of tris buffer and EtOH (19:1, v/v) at physiological pH. The chromogenic signalling relies upon hydrazine-induced cleavage of an ester moiety of the probe to its resonance stabilized quinonoid form, resulting in momentous variations in its spectrophotometric profile. Meanwhile, the colour of the probe solution changed from mustard yellow to blue within few minutes. This sensing assay could be successfully applied in the recognition of hydrazine in real environmental and pharmaceutical samples with satisfactory recoveries. Given the cost-effectiveness, simplicity and versatility, for instance, direct analysis of colorimetric probes, it is reasonable to propose that the present method can serve as a complementary method for prompt inspection of hydrazine in boiler feed water.

7.
Chem Asian J ; 15(1): 66-71, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31802638

ABSTRACT

Two silylene-spaced ((E)-vinylsilyl)anthracene-dipyrromethane dyads have been designed and synthesized by RhCl(PPh3 )3 -catalyzed hydrosilylation reactions of 5-methyl-5'-(ethynylaryl)dipyrromethanes with (9-Anthryl)-dimethylsilane. The complexation studies of dyads toward different anions have also been performed, which reveal that dyads exhibit a highly selective response towards fluoride anion attributable to both hydrogen-bonding and pentacoordination phenomena. This dual-mode fluoride recognition event is unprecedented and may pave the way for future developments in the areas of porphyrinoids, organosilicon, polymer, and supramolecular chemistry.

8.
Molecules ; 12(11): 2458-66, 2007 Nov 09.
Article in English | MEDLINE | ID: mdl-18065950

ABSTRACT

A facile and efficient protocol is reported for the synthesis of calix[4]pyrroles and N-confused calix[4]pyrroles in moderate to excellent yields by reaction of dialkyl or cycloalkyl ketones with pyrrole catalyzed by reusable Amberlyst(TM)-15 under eco-friendly conditions.


Subject(s)
Acids/chemistry , Calixarenes/chemical synthesis , Ketones/chemistry , Porphyrins/chemical synthesis , Pyrroles/chemistry , Styrenes/chemistry , Calixarenes/chemistry , Molecular Structure , Porphyrins/chemistry
9.
Anal Chim Acta ; 757: 48-55, 2012 Dec 13.
Article in English | MEDLINE | ID: mdl-23206395

ABSTRACT

The time-of-flight secondary ion mass spectrometry (TOF-SIMS) has emerged as a powerful tool for the unswerving detection of biomolecules, in particular, proteins and peptides. To date, there is very little information available on the direct determination of trimethyl/triethyl amines using TOF-SIMS. One major hurdle in this regard is an ultrahigh vacuum system, usually needed in TOF-SIMS, which hampers its usability to trimethyl/triethyl amines owing to their high evaporation rate. We designed an efficient and sensitive protocol for rapid identification and sensitive determination of tertiaryalkyl amines using TOF-SIMS. The amines were derivatized by reaction with 1,4-butane sultone and sulphuric acid sequentially to afford the corresponding sulphonic acidic ionic liquids (ILs). The TOF-SIMS analysis of these task-specific ILs (TSILs) was carried out in both positive and negative polarity. The positive ion mass spectra of TSILs showed sharp fragmented peaks for tertiaryalkyl amines at typical level and up to 10ppm. The possible mechanism for different fragmentation pathways in positive polarity was discussed.

SELECTION OF CITATIONS
SEARCH DETAIL