Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
Add more filters

Country/Region as subject
Publication year range
1.
EMBO J ; 40(5): e104267, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33491217

ABSTRACT

Impairments in social relationships and awareness are features observed in autism spectrum disorders (ASDs). However, the underlying mechanisms remain poorly understood. Shank2 is a high-confidence ASD candidate gene and localizes primarily to postsynaptic densities (PSDs) of excitatory synapses in the central nervous system (CNS). We show here that loss of Shank2 in mice leads to a lack of social attachment and bonding behavior towards pubs independent of hormonal, cognitive, or sensitive deficits. Shank2-/- mice display functional changes in nuclei of the social attachment circuit that were most prominent in the medial preoptic area (MPOA) of the hypothalamus. Selective enhancement of MPOA activity by DREADD technology re-established social bonding behavior in Shank2-/- mice, providing evidence that the identified circuit might be crucial for explaining how social deficits in ASD can arise.


Subject(s)
Autistic Disorder/drug therapy , Disease Models, Animal , Interpersonal Relations , Maternal Behavior/drug effects , Nerve Tissue Proteins/physiology , Piperazines/pharmacology , Preoptic Area/drug effects , Animals , Autistic Disorder/etiology , Autistic Disorder/metabolism , Autistic Disorder/pathology , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Preoptic Area/metabolism , Preoptic Area/pathology , Synapses
2.
Mol Psychiatry ; 29(3): 704-717, 2024 03.
Article in English | MEDLINE | ID: mdl-38123724

ABSTRACT

The Shank3 gene encodes the major postsynaptic scaffolding protein SHANK3. Its mutation causes a syndromic form of autism spectrum disorder (ASD): Phelan-McDermid Syndrome (PMDS). It is characterized by global developmental delay, intellectual disorders (ID), ASD behavior, affective symptoms, as well as extra-cerebral symptoms. Although Shank3 deficiency causes a variety of molecular alterations, they do not suffice to explain all clinical aspects of this heterogenic syndrome. Since global gene expression alterations in Shank3 deficiency remain inadequately studied, we explored the transcriptome in vitro in primary hippocampal cells from Shank3∆11(-/-) mice, under control and lithium (Li) treatment conditions, and confirmed the findings in vivo. The Shank3∆11(-/-) genotype affected the overall transcriptome. Remarkably, extracellular matrix (ECM) and cell cycle transcriptional programs were disrupted. Accordingly, in the hippocampi of adolescent Shank3∆11(-/-) mice we found proteins of the collagen family and core cell cycle proteins downregulated. In vitro Li treatment of Shank3∆11(-/-) cells had a rescue-like effect on the ECM and cell cycle gene sets. Reversed ECM gene sets were part of a network, regulated by common transcription factors (TF) such as cAMP responsive element binding protein 1 (CREB1) and ß-Catenin (CTNNB1), which are known downstream effectors of synaptic activity and targets of Li. These TFs were less abundant and/or hypo-phosphorylated in hippocampi of Shank3∆11(-/-) mice and could be rescued with Li in vitro and in vivo. Our investigations suggest the ECM compartment and cell cycle genes as new players in the pathophysiology of Shank3 deficiency, and imply involvement of transcriptional regulators, which can be modulated by Li. This work supports Li as potential drug in the management of PMDS symptoms, where a Phase III study is ongoing.


Subject(s)
Extracellular Matrix , Hippocampus , Mice, Knockout , Nerve Tissue Proteins , beta Catenin , Animals , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Hippocampus/metabolism , Extracellular Matrix/metabolism , Mice , beta Catenin/metabolism , beta Catenin/genetics , Chromosome Disorders/genetics , Chromosome Disorders/metabolism , Chromosome Deletion , Cell Cycle/drug effects , Cell Cycle/genetics , Autistic Disorder/genetics , Autistic Disorder/metabolism , Chromosomes, Human, Pair 22/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP Response Element-Binding Protein/genetics , Male , Transcriptome/genetics , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/drug therapy , Mice, Inbred C57BL , Lithium/pharmacology , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Cells, Cultured
3.
Mol Psychiatry ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649753

ABSTRACT

Synaptic dysfunction is a key feature of SHANK-associated disorders such as autism spectrum disorder, schizophrenia, and Phelan-McDermid syndrome. Since detailed knowledge of their effect on synaptic nanostructure remains limited, we aimed to investigate such alterations in ex11|SH3 SHANK3-KO mice combining expansion and STED microscopy. This enabled high-resolution imaging of mosaic-like arrangements formed by synaptic proteins in both human and murine brain tissue. We found distinct shape-profiles as fingerprints of the murine postsynaptic scaffold across brain regions and genotypes, as well as alterations in the spatial and molecular organization of subsynaptic domains under SHANK3-deficient conditions. These results provide insights into synaptic nanostructure in situ and advance our understanding of molecular mechanisms underlying synaptic dysfunction in neuropsychiatric disorders.

4.
Brain ; 146(9): 3770-3782, 2023 09 01.
Article in English | MEDLINE | ID: mdl-36883643

ABSTRACT

Amyotrophic lateral sclerosis is a fatal and incurable neurodegenerative disease that mainly affects the neurons of the motor system. Despite the increasing understanding of its genetic components, their biological meanings are still poorly understood. Indeed, it is still not clear to which extent the pathological features associated with amyotrophic lateral sclerosis are commonly shared by the different genes causally linked to this disorder. To address this point, we combined multiomics analysis covering the transcriptional, epigenetic and mutational aspects of heterogenous human induced pluripotent stem cell-derived C9orf72-, TARDBP-, SOD1- and FUS-mutant motor neurons as well as datasets from patients' biopsies. We identified a common signature, converging towards increased stress and synaptic abnormalities, which reflects a unifying transcriptional program in amyotrophic lateral sclerosis despite the specific profiles due to the underlying pathogenic gene. In addition, whole genome bisulphite sequencing linked the altered gene expression observed in mutant cells to their methylation profile, highlighting deep epigenetic alterations as part of the abnormal transcriptional signatures linked to amyotrophic lateral sclerosis. We then applied multi-layer deep machine-learning to integrate publicly available blood and spinal cord transcriptomes and found a statistically significant correlation between their top predictor gene sets, which were significantly enriched in toll-like receptor signalling. Notably, the overrepresentation of this biological term also correlated with the transcriptional signature identified in mutant human induced pluripotent stem cell-derived motor neurons, highlighting novel insights into amyotrophic lateral sclerosis marker genes in a tissue-independent manner. Finally, using whole genome sequencing in combination with deep learning, we generated the first mutational signature for amyotrophic lateral sclerosis and defined a specific genomic profile for this disease, which is significantly correlated to ageing signatures, hinting at age as a major player in amyotrophic lateral sclerosis. This work describes innovative methodological approaches for the identification of disease signatures through the combination of multiomics analysis and provides novel knowledge on the pathological convergencies defining amyotrophic lateral sclerosis.


Subject(s)
Amyotrophic Lateral Sclerosis , Induced Pluripotent Stem Cells , Neurodegenerative Diseases , Humans , Amyotrophic Lateral Sclerosis/metabolism , Multiomics , Neurodegenerative Diseases/metabolism , C9orf72 Protein/genetics , Superoxide Dismutase-1/genetics , Induced Pluripotent Stem Cells/metabolism , Motor Neurons/metabolism
5.
BMC Biol ; 21(1): 254, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37953224

ABSTRACT

BACKGROUND: SHANKs are major scaffolding proteins at postsynaptic densities (PSDs) in the central nervous system. Mutations in all three family members have been associated with neurodevelopmental disorders such as autism spectrum disorders (ASDs). Despite the pathophysiological importance of SHANK2 and SHANK3 mutations in humans, research on the expression of these proteins is mostly based on rodent model organisms. RESULTS: In the present study, cellular and neuropil SHANK2 expression was analyzed by immunofluorescence (IF) staining of post mortem human brain tissue from four male individuals (19 brain regions). Mouse brains were analyzed in comparison to evaluate the degree of phylogenetic conservation. Furthermore, SHANK2 and SHANK3 isoform patterns were compared in human and mouse brain lysates. While isoform expression and subcellular distribution were largely conserved, differences in neuropil levels of SHANK2 were found by IF staining: Maximum expression was concordantly measured in the cerebellum; however, higher SHANK2 expression was detected in the human brainstem and thalamus when compared to mice. One of the lowest SHANK2 levels was found in the human amygdala, a moderately expressing region in mouse. Quantification of SHANK3 IF in mouse brains unveiled a distribution comparable to humans. CONCLUSIONS: In summary, these data show that the overall expression pattern of SHANK is largely conserved in defined brain regions; however, differences do exist, which need to be considered in the translation of rodent studies. The summarized expression patterns of SHANK2 and SHANK3 should serve as a reference for future studies.


Subject(s)
Autistic Disorder , Nerve Tissue Proteins , Animals , Humans , Male , Mice , Autistic Disorder/genetics , Brain/metabolism , Hippocampus/metabolism , Phylogeny , Protein Isoforms/metabolism , Nerve Tissue Proteins/genetics
6.
BMC Biol ; 21(1): 113, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37221592

ABSTRACT

BACKGROUND: Post mortem human brain tissue is an essential resource to study cell types, connectivity as well as subcellular structures down to the molecular setup of the central nervous system especially with respect to the plethora of brain diseases. A key method is immunostaining with fluorescent dyes, which allows high-resolution imaging in three dimensions of multiple structures simultaneously. Although there are large collections of formalin-fixed brains, research is often limited because several conditions arise that complicate the use of human brain tissue for high-resolution fluorescence microscopy. RESULTS: In this study, we developed a clearing approach for immunofluorescence-based analysis of perfusion- and immersion-fixed post mortem human brain tissue, termed human Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging / Immunostaining / In situ hybridization-compatible Tissue-hYdrogel (hCLARITY). hCLARITY is optimized for specificity by reducing off-target labeling and yields very sensitive stainings in human brain sections allowing for super-resolution microscopy with unprecedented imaging of pre- and postsynaptic compartments. Moreover, hallmarks of Alzheimer's disease were preserved with hCLARITY, and importantly classical 3,3'-diaminobenzidine (DAB) or Nissl stainings are compatible with this protocol. hCLARITY is very versatile as demonstrated by the use of more than 30 well performing antibodies and allows for de- and subsequent re-staining of the same tissue section, which is important for multi-labeling approaches, e.g., in super-resolution microscopy. CONCLUSIONS: Taken together, hCLARITY enables research of the human brain with high sensitivity and down to sub-diffraction resolution. It therefore has enormous potential for the investigation of local morphological changes, e.g., in neurodegenerative diseases.


Subject(s)
Brain , Central Nervous System , Humans , Microscopy, Fluorescence , Acrylamide , Fluorescent Dyes
7.
Acta Neuropathol ; 146(3): 451-475, 2023 09.
Article in English | MEDLINE | ID: mdl-37488208

ABSTRACT

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease mainly affecting upper and lower motoneurons. Several functionally heterogeneous genes have been associated with the familial form of this disorder (fALS), depicting an extremely complex pathogenic landscape. This heterogeneity has limited the identification of an effective therapy, and this bleak prognosis will only improve with a greater understanding of convergent disease mechanisms. Recent evidence from human post-mortem material and diverse model systems has highlighted the synapse as a crucial structure actively involved in disease progression, suggesting that synaptic aberrations might represent a shared pathological feature across the ALS spectrum. To test this hypothesis, we performed the first comprehensive analysis of the synaptic proteome from post-mortem spinal cord and human iPSC-derived motoneurons carrying mutations in the major ALS genes. This integrated approach highlighted perturbations in the molecular machinery controlling vesicle release as a shared pathomechanism in ALS. Mechanistically, phosphoproteomic analysis linked the presynaptic vesicular phenotype to an accumulation of cytotoxic protein aggregates and to the pro-apoptotic activation of the transcription factor c-Jun, providing detailed insights into the shared pathobiochemistry in ALS. Notably, sub-chronic treatment of our iPSC-derived motoneurons with the fatty acid docosahexaenoic acid exerted a neuroprotective effect by efficiently rescuing the alterations revealed by our multidisciplinary approach. Together, this study provides strong evidence for the central and convergent role played by the synaptic microenvironment within the ALS spinal cord and highlights a potential therapeutic target that counteracts degeneration in a heterogeneous cohort of human motoneuron cultures.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Humans , Amyotrophic Lateral Sclerosis/pathology , Neurodegenerative Diseases/pathology , Proteomics , Superoxide Dismutase-1/genetics , Motor Neurons/metabolism
8.
Mol Psychiatry ; 27(12): 4994-5006, 2022 12.
Article in English | MEDLINE | ID: mdl-36100669

ABSTRACT

Members of the Shank protein family are master scaffolds of the postsynaptic architecture and mutations within the SHANK genes are causally associated with autism spectrum disorders (ASDs). We generated a Shank2-Shank3 double knockout mouse that is showing severe autism related core symptoms, as well as a broad spectrum of comorbidities. We exploited this animal model to identify cortical brain areas linked to specific autistic traits by locally deleting Shank2 and Shank3 simultaneously. Our screening of 10 cortical subregions revealed that a Shank2/3 deletion within the retrosplenial area severely impairs social memory, a core symptom of ASD. Notably, DREADD-mediated neuronal activation could rescue the social impairment triggered by Shank2/3 depletion. Data indicate that the retrosplenial area has to be added to the list of defined brain regions that contribute to the spectrum of behavioural alterations seen in ASDs.


Subject(s)
Autism Spectrum Disorder , Gyrus Cinguli , Social Interaction , Animals , Mice , Autism Spectrum Disorder/genetics , Microfilament Proteins/genetics , Mutation , Nerve Tissue Proteins/genetics , Neurons/physiology , Gyrus Cinguli/metabolism , Gyrus Cinguli/pathology
9.
Cell Mol Life Sci ; 79(7): 371, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35726031

ABSTRACT

Mutations or deletions of the SHANK3 gene are causative for Phelan-McDermid syndrome (PMDS), a syndromic form of autism spectrum disorders (ASDs). We analyzed Shank3Δ11(-/-) mice and organoids from PMDS individuals to study effects on myelin. SHANK3 was found to be expressed in oligodendrocytes and Schwann cells, and MRI analysis of Shank3Δ11(-/-) mice revealed a reduced volume of the corpus callosum as seen in PMDS patients. Myelin proteins including myelin basic protein showed significant temporal and regional differences with lower levels in the CNS but increased amounts in the PNS of Shank3Δ11(-/-) animals. Node, as well as paranode, lengths were increased and ultrastructural analysis revealed region-specific alterations of the myelin sheaths. In PMDS hiPSC-derived cerebral organoids we observed an altered number and delayed maturation of myelinating cells. These findings provide evidence that, in addition to a synaptic deregulation, impairment of myelin might profoundly contribute to the clinical manifestation of SHANK3 deficiency.


Subject(s)
Autism Spectrum Disorder , Chromosome Disorders , Microfilament Proteins , Myelin Sheath , Nerve Tissue Proteins , Animals , Autism Spectrum Disorder/genetics , Chromosome Deletion , Chromosome Disorders/genetics , Chromosome Disorders/metabolism , Chromosomes, Human, Pair 22 , Humans , Mice , Mice, Knockout , Microfilament Proteins/genetics , Myelin Sheath/pathology , Nerve Tissue Proteins/genetics , Peripheral Nervous System/metabolism
10.
EMBO J ; 37(16)2018 08 15.
Article in English | MEDLINE | ID: mdl-29875132

ABSTRACT

Astrocytes are involved in non-cell-autonomous pathogenic cascades in amyotrophic lateral sclerosis (ALS); however, their role is still debated. We show that astrocytic NF-κB activation drives microglial proliferation and leukocyte infiltration in the SOD1 (G93A) ALS model. This response prolongs the presymptomatic phase, delaying muscle denervation and decreasing disease burden, but turns detrimental in the symptomatic phase, accelerating disease progression. The transition corresponds to a shift in the microglial phenotype showing two effects that can be dissociated by temporally controlling NF-κB activation. While NF-κB activation in astrocytes induced a Wnt-dependent microglial proliferation in the presymptomatic phase with neuroprotective effects on motoneurons, in later stage, astrocyte NF-κB-dependent microglial activation caused an accelerated disease progression. Notably, suppression of the early microglial response by CB2R agonists had acute detrimental effects. These data identify astrocytes as important regulators of microglia expansion and immune response. Therefore, stage-dependent microglia modulation may be an effective therapeutic strategy in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/immunology , Astrocytes/immunology , NF-kappa B/immunology , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/therapy , Animals , Astrocytes/pathology , Disease Models, Animal , Mice , Mice, Transgenic , Microglia/immunology , Microglia/pathology , Motor Neurons/immunology , Motor Neurons/pathology , NF-kappa B/genetics , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/genetics , Receptor, Cannabinoid, CB2/immunology , Superoxide Dismutase/genetics , Superoxide Dismutase/immunology , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/immunology
11.
Mol Psychiatry ; 26(6): 1928-1944, 2021 06.
Article in English | MEDLINE | ID: mdl-33402706

ABSTRACT

Human mutations and haploinsufficiency of the SHANK family genes are associated with autism spectrum disorders (ASD) and intellectual disability (ID). Complex phenotypes have been also described in all mouse models of Shank mutations and deletions, consistent with the heterogeneity of the human phenotypes. However, the specific role of Shank proteins in synapse and neuronal functions remain to be elucidated. Here, we generated a new mouse model to investigate how simultaneously deletion of Shank1 and Shank3 affects brain development and behavior in mice. Shank1-Shank3 DKO mice showed a low survival rate, a developmental strong reduction in the activation of intracellular signaling pathways involving Akt, S6, ERK1/2, and eEF2 during development and a severe behavioral impairments. Our study suggests that Shank1 and Shank3 proteins are essential to developmentally regulate the activation of Akt and correlated intracellular pathways crucial for mammalian postnatal brain development and synaptic plasticity. Therefore, Akt function might represent a new therapeutic target for enhancing cognitive abilities of syndromic ASD patients.


Subject(s)
Autism Spectrum Disorder , Proto-Oncogene Proteins c-akt , Animals , Autism Spectrum Disorder/genetics , Humans , Mice , Mice, Knockout , Microfilament Proteins , Nerve Tissue Proteins/genetics , Synapses
12.
Mol Psychiatry ; 26(8): 3778-3794, 2021 08.
Article in English | MEDLINE | ID: mdl-32051550

ABSTRACT

Older patients with severe physical trauma are at high risk of developing neuropsychiatric syndromes with global impairment of cognition, attention, and consciousness. We employed a thoracic trauma (TxT) mouse model and thoroughly analyzed age-dependent spatial and temporal posttraumatic alterations in the central nervous system. Up to 5 days after trauma, we observed a transient 50% decrease in the number of excitatory synapses specifically in hippocampal pyramidal neurons accompanied by alterations in attention and motor activity and disruption of contextual memory consolidation. In parallel, hippocampal corticotropin-releasing hormone (CRH) expression was highly upregulated, and brain-derived neurotrophic factor (BDNF) levels were significantly reduced. In vitro experiments revealed that CRH application induced neuronal autophagy with rapid lysosomal degradation of BDNF via the NF-κB pathway. The subsequent synaptic loss was rescued by BDNF as well as by specific NF-κB and CRH receptor 1 (CRHR1) antagonists. In vivo, the chronic application of a CRHR1 antagonist after TxT resulted in reversal of the observed histological, molecular, and behavioral alterations. The data suggest that neuropsychiatric syndromes (i.e., delirium) after peripheral trauma might be at least in part due to the activation of the hippocampal CRH/NF-κB/BDNF pathway, which results in a dramatic loss of synaptic contacts. The successful rescue by stress hormone receptor antagonists should encourage clinical trials focusing on trauma-induced delirium and/or other posttraumatic syndromes.


Subject(s)
Delirium , Neurons , Animals , Corticotropin-Releasing Hormone , Humans , Memory Disorders/drug therapy , Memory Disorders/etiology , Mice , Receptors, Corticotropin-Releasing Hormone , Syndrome
13.
Cell Mol Life Sci ; 79(1): 46, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34936034

ABSTRACT

Gastrointestinal (GI) problems and microbiota alterations have been frequently reported in autism spectrum disorders (ASD). In addition, abnormal perinatal trace metal levels have been found in ASD. Accordingly, mice exposed to prenatal zinc deficiency display features of ASD-like behavior. Here, we model GI development using 3D intestinal organoids grown under zinc-restricted conditions. We found significant morphological alterations. Using proteomic approaches, we identified biological processes affected by zinc deficiency that regulate barrier permeability and pro-inflammatory pathways. We confirmed our results in vivo through proteomics studies and investigating GI development in zinc-deficient mice. These show altered GI physiology and pro-inflammatory signaling, resulting in chronic systemic and neuroinflammation, and gut microbiota composition similar to that reported in human ASD cases. Thus, low zinc status during development is sufficient to compromise intestinal barrier integrity and activate pro-inflammatory signaling, resulting in changes in microbiota composition that may aggravate inflammation, altogether mimicking the co-morbidities frequently observed in ASD.


Subject(s)
Autism Spectrum Disorder , Gastrointestinal Diseases , Neuroinflammatory Diseases , Zinc/deficiency , Animals , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/microbiology , Female , Gastrointestinal Diseases/metabolism , Gastrointestinal Diseases/microbiology , Gastrointestinal Microbiome , Gastrointestinal Tract/growth & development , Male , Mice , Mice, Inbred C57BL , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/microbiology , Organoids , Proteomics
14.
Int J Mol Sci ; 23(11)2022 May 29.
Article in English | MEDLINE | ID: mdl-35682760

ABSTRACT

Autism spectrum disorders (ASDs) are characterized by repetitive behaviors and impairments of sociability and communication. About 1% of ASD cases are caused by mutations of SHANK3, a major scaffolding protein of the postsynaptic density. We studied the role of SHANK3 in plastic changes of excitatory synapses within the central nervous system by employing mild traumatic brain injury (mTBI) in WT and Shank3 knockout mice. In WT mice, mTBI triggered ipsi- and contralateral loss of hippocampal dendritic spines and excitatory synapses with a partial recovery over time. In contrast, no significant synaptic alterations were detected in Shank3∆11-/- mice, which showed fewer dendritic spines and excitatory synapses at baseline. In line, mTBI induced the upregulation of synaptic plasticity-related proteins Arc and p-cofilin only in WT mice. Interestingly, microglia proliferation was observed in WT mice after mTBI but not in Shank3∆11-/- mice. Finally, we detected TBI-induced increased fear memory at the behavioral level, whereas in Shank3∆11-/- animals, the already-enhanced fear memory levels increased only slightly after mTBI. Our data show the lack of structural synaptic plasticity in Shank3 knockout mice that might explain at least in part the rigidity of behaviors, problems in adjusting to new situations and cognitive deficits seen in ASDs.


Subject(s)
Autistic Disorder , Brain Injuries, Traumatic , Animals , Autistic Disorder/genetics , Autistic Disorder/metabolism , Brain Injuries, Traumatic/metabolism , Mice , Mice, Knockout , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neuronal Plasticity/genetics , Synapses/metabolism
15.
Hum Mol Genet ; 28(17): 2835-2850, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31108504

ABSTRACT

The fatal neurodegenerative disease amyotrophic lateral sclerosis (ALS) is characterized by a profound loss of motor neurons (MNs). Until now only riluzole minimally extends life expectancy in ALS, presumably by inhibiting glutamatergic neurotransmission and calcium overload of MNs. Therefore, the aim of this study was to investigate the glutamate receptor properties and key aspects of intracellular calcium dynamics in induced pluripotent stem cell (iPSC)-derived MNs from ALS patients with C9orf72 (n = 4 cell lines), fused in sarcoma (FUS) (n = 9), superoxide dismutase 1 (SOD1) (n = 3) or transactive response DNA-binding protein 43 (TDP43) (n = 3) mutations as well as healthy (n = 7 cell lines) and isogenic controls (n = 3). Using calcium imaging, we most frequently observed spontaneous transients in mutant C9orf72 MNs. Basal intracellular calcium levels and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-induced signal amplitudes were elevated in mutant TDP43 MNs. Besides, a majority of mutant TDP43 MNs responded to 3.5-dihydroxyphenylglycine as metabotropic glutamate receptor agonist. Quantitative real-time PCR demonstrated significantly increased expression levels of AMPA and kainate receptors in mutant FUS cells compared to healthy and isogenic controls. Furthermore, the expression of kainate receptors and voltage gated calcium channels in mutant C9orf72 MNs as well as metabotropic glutamate receptors in mutant SOD1 cells was markedly elevated compared to controls. Our data of iPSC-derived MNs from familial ALS patients revealed several mutation-specific alterations in glutamate receptor properties and calcium dynamics that could play a role in ALS pathogenesis and may lead to future translational strategies with individual stratification of neuroprotective ALS treatments.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Calcium/metabolism , Induced Pluripotent Stem Cells/metabolism , Motor Neurons/cytology , Motor Neurons/metabolism , Mutation , Receptors, Glutamate/metabolism , Amyotrophic Lateral Sclerosis/diagnosis , Biomarkers , C9orf72 Protein/genetics , Calcium Signaling , DNA-Binding Proteins/genetics , Disease Susceptibility , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , RNA-Binding Protein FUS/genetics , Superoxide Dismutase-1/genetics
16.
Int J Mol Sci ; 22(5)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33669083

ABSTRACT

Phelan McDermid syndrome (PMcD) is a neurogenetic disease associated with haploinsufficiency of the SHANK3 gene due to a spectrum of anomalies in the terminal region of the long arm of chromosome 22. SHANK3 is the abbreviation for SH3 domain and ankyrin repeat-containing protein, a gene that encodes for proteins of the postsynaptic density (PSD) of excitatory synapses. This PSD is relevant for the induction and plasticity of spine and synapse formation as a basis for learning processes and long-term potentiation. Individuals with PMcD present with intellectual disability, muscular hypotonia, and severely delayed or absent speech. Further neuropsychiatric manifestations cover symptoms of the autism spectrum, epilepsy, bipolar disorders, schizophrenia, and regression. Regression is one of the most feared syndromes by relatives of PMcD patients. Current scientific evidence indicates that the onset of regression is variable and affects language, motor skills, activities of daily living and cognition. In the case of regression, patients normally undergo further diagnostics to exclude treatable reasons such as complex-focal seizures or psychiatric comorbidities. Here, we report, for the first time, the case of a young female who developed progressive symptoms of regression and a dystonic-spastic hemiparesis that could be traced back to a comorbid multiple sclerosis and that improved after treatment with methylprednisolone.


Subject(s)
Autoimmune Diseases/drug therapy , Chromosome Disorders/complications , Methylprednisolone/administration & dosage , Multiple Sclerosis/complications , Regression, Psychology , Abnormalities, Multiple/genetics , Abnormalities, Multiple/physiopathology , Administration, Intravenous , Adult , Autism Spectrum Disorder/complications , Autoimmune Diseases/cerebrospinal fluid , Autoimmune Diseases/complications , Autoimmune Diseases/immunology , Chromosome Deletion , Chromosome Disorders/cerebrospinal fluid , Chromosome Disorders/diagnostic imaging , Chromosome Disorders/genetics , Chromosomes, Human, 21-22 and Y/genetics , Chromosomes, Human, Pair 22/genetics , Female , Humans , Magnetic Resonance Imaging , Multiple Sclerosis/cerebrospinal fluid , Nerve Tissue Proteins/genetics , Sequence Deletion , Spinal Puncture
17.
Development ; 144(2): 321-333, 2017 01 15.
Article in English | MEDLINE | ID: mdl-27993984

ABSTRACT

The signal-induced proliferation-associated family of proteins comprises four members, SIPA1 and SIPA1L1-3. Mutations of the human SIPA1L3 gene result in congenital cataracts. In Xenopus, loss of Sipa1l3 function led to a severe eye phenotype that was distinguished by smaller eyes and lenses including lens fiber cell maturation defects. We found a direct interaction between Sipa1l3 and Epha4, building a functional platform for proper ocular development. Epha4 deficiency phenocopied loss of Sipa1l3 and rescue experiments demonstrated that Epha4 acts upstream of Sipa1l3 during eye development, with both Sipa1l3 and Epha4 required for early eye specification. The ocular phenotype, upon loss of either Epha4 or Sipa1l3, was partially mediated by rax We demonstrate that canonical Wnt signaling is inhibited downstream of Epha4 and Sipa1l3 during normal eye development. Depletion of either Sipa1l3 or Epha4 resulted in an upregulation of axin2 expression, a direct Wnt/ß-catenin target gene. In line with this, Sipa1l3 or Epha4 depletion could be rescued by blocking Wnt/ß-catenin or activating non-canonical Wnt signaling. We therefore conclude that this pathomechanism prevents proper eye development and maturation of lens fiber cells, resulting in congenital cataracts.


Subject(s)
Eye/embryology , GTPase-Activating Proteins/physiology , Lens, Crystalline/embryology , Lens, Crystalline/growth & development , Receptor, EphA4/physiology , Wnt Signaling Pathway/physiology , Animals , Animals, Genetically Modified , Cataract/genetics , Cell Differentiation/genetics , Embryo, Nonmammalian , Eye/metabolism , GTPase-Activating Proteins/metabolism , Gene Expression Regulation, Developmental , Humans , Lens, Crystalline/metabolism , Organogenesis/genetics , Protein Binding , Receptor, EphA4/metabolism , Xenopus/embryology , Xenopus/genetics
18.
Int J Mol Sci ; 20(9)2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31052177

ABSTRACT

Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders characterized by deficits in social interaction and communication, and repetitive behaviors. In addition, co-morbidities such as gastro-intestinal problems have frequently been reported. Mutations and deletion of proteins of the SH3 and multiple ankyrin repeat domains (SHANK) gene-family were identified in patients with ASD, and Shank knock-out mouse models display autism-like phenotypes. SHANK3 proteins are not only expressed in the central nervous system (CNS). Here, we show expression in gastrointestinal (GI) epithelium and report a significantly different GI morphology in Shank3 knock-out (KO) mice. Further, we detected a significantly altered microbiota composition measured in feces of Shank3 KO mice that may contribute to inflammatory responses affecting brain development. In line with this, we found higher E. coli lipopolysaccharide levels in liver samples of Shank3 KO mice, and detected an increase in Interleukin-6 and activated astrocytes in Shank3 KO mice. We conclude that apart from its well-known role in the CNS, SHANK3 plays a specific role in the GI tract that may contribute to the ASD phenotype by extracerebral mechanisms.


Subject(s)
Autism Spectrum Disorder/microbiology , Gastrointestinal Microbiome , Nerve Tissue Proteins/genetics , Animals , Astrocytes/metabolism , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/pathology , Interleukin-6/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Lipopolysaccharides/metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL , Microfilament Proteins
19.
J Neurochem ; 145(6): 449-463, 2018 06.
Article in English | MEDLINE | ID: mdl-29473168

ABSTRACT

The Shank proteins are crucial scaffolding elements of the post-synaptic density (PSD). One of the best-characterized domains in Shank is the PDZ domain, which binds to C-terminal segments of several other PSD proteins. We carried out a detailed structural analysis of Shank3 PDZ domain-peptide complexes, to understand determinants of binding affinity towards different ligand proteins. Ligand peptides from four different proteins were cocrystallized with the Shank3 PDZ domain, and binding affinities were determined calorimetrically. In addition to conserved class I interactions between the first and third C-terminal peptide residue and Shank3, side chain interactions of other residues in the peptide with the PDZ domain are important factors in defining affinity. Structural conservation suggests that the binding specificities of the PDZ domains from different Shanks are similar. Two conserved buried water molecules in PDZ domains may affect correct local folding of ligand recognition determinants. The solution structure of a tandem Shank3 construct containing the SH3 and PDZ domains showed that the two domains are close to each other, which could be of relevance, when recognizing and binding full target proteins. The SH3 domain did not affect the affinity of the PDZ domain towards short target peptides, and the schizophrenia-linked Shank3 mutation R536W in the linker between the domains had no effect on the structure or peptide interactions of the Shank3 SH3-PDZ unit. Our data show the spatial arrangement of two adjacent Shank domains and pinpoint affinity determinants for short PDZ domain ligands with limited sequence homology.


Subject(s)
Nerve Tissue Proteins/genetics , PDZ Domains/physiology , Post-Synaptic Density/genetics , Amino Acid Sequence , Animals , Binding Sites , Circular Dichroism , Crystallization , Molecular Dynamics Simulation , Mutation/genetics , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/physiology , Post-Synaptic Density/chemistry , Post-Synaptic Density/physiology , Protein Binding , Protein Structure, Tertiary , Rats , Scattering, Radiation , Schizophrenia/genetics , Water/metabolism , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL