Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
J Dairy Sci ; 104(7): 8039-8049, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33934859

ABSTRACT

Greenhouse gas (GHG) emissions and nitrogen (N) efficiencies were modeled for 2 genetic groups (GG) of Holstein-Friesian cows across 3 contrasting feeding treatments (FT). The 2 GG were (1) high economic breeding index (EBI) animals representative of the top 5% of cows nationally (elite) and (2) EBI representative of the national average (NA). The FT represented (1) generous feeding of pasture, (2) a slight restriction in pasture allowance, and (3) a high-concentrate feeding system with adequate pasture allowance. Greenhouse gas and N balance models were parameterized using outputs generated from the Moorepark Dairy Systems model, a stochastic budgetary simulation model, having integrated biological data pertaining to the 6 scenarios (2 GG × 3 FT) obtained from a 4-yr experiment conducted between 2013 and 2016. On a per hectare basis, total system GHG emissions were similar for both elite and NA across the 3 FT. Per unit of product, however, the elite group had 10% and 11% lower GHG emissions per kilogram of fat- and protein-corrected milk and per kilogram of milk solids (MSO; fat + protein kg), respectively, compared with the NA across the 3 FT. The FT incorporating high concentrate supplementation had greater absolute GHG emissions per hectare as well as GHG per kilogram of fat- and protein-corrected milk and MSO. The elite group had a slightly superior N use efficiency (N output/N input) and lower N surplus (N input - N output) compared with the NA group. The high concentrate FT had an inferior N use efficiency and a higher N surplus. The results of the current study demonstrate that breeding for increased EBI will lead to a general improvement in GHG emissions per unit of product as well as improved N efficiency. The results also illustrate that reducing concentrate supplementation will reduce GHG emissions, GHG emissions intensity, while improving N efficiency in the context of pasture-based dairy production.


Subject(s)
Dairying , Greenhouse Gases , Animal Feed , Animals , Cattle , Diet , Female , Lactation , Milk , Nitrogen , Seasons
2.
J Dairy Sci ; 102(10): 8986-8998, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31351727

ABSTRACT

Pasture availability in early spring can be limited due to climatic effects on grass production, increasing the likelihood of feed deficits in early lactation of spring-calving pasture-based systems. We hypothesized that restricting pasture allowance (PA) when animals are at peak milk production will have more negative implications on milk production compared with restricting animals before this period. A total of 105 cows were assigned to 1 of 7 grazing treatments from March 14 to October 31, 2016 (33 wk). The control treatment was offered a PA to achieve a postgrazing sward height > 3.5 cm and mean pasture allowance of 15.5 kg of dry matter per cow. The remaining treatments were offered a PA representing 60% of that offered to the control for a duration of 2 or 6 wk from March 14 (mid-March; MMx2 and MMx6), March 28 (end of March; EMx2 and EMx6), or April 11 (mid-April; MAx2 and MAx6). Within grazing treatment, animals were also assigned to 1 of 2 calving dates (early and late) based on days in milk (DIM) on March 14. Early calved (EC) cows were ≥36 DIM, while late calved (LC) were ≤35 DIM. Restricting PA for 2 and 6 wk reduced daily milk yield (-1.6 and -2.2 kg/cow, respectively), cumulative milk protein yield (-4.0 and -6.3 kg/cow, respectively), and cumulative milk solids yield (-5.8 and -9.5 kg/cow, respectively) in the first 10 wk of the experiment. Daily milk yield was similar across the treatments at the end of the 33-wk period (16.8 kg/cow, average of all treatments), as was daily milk solids yield (1.40 kg/cow). Cows in the EC group produced less milk over the first 10 wk of the experiment (20.0 kg/cow per day) compared with the LC animals (22.1 kg/cow per day). However, body weight was greater (+15 kg/cow) in the EC animals compared with the LC, while body condition score was similar (2.85). This outcome indicates that animals that are restricted later in early lactation (circa onset of peak milk production) partition a greater proportion of available energy to maintenance, resulting in greater losses in milk production. These data indicate that despite the immediate reduction in milk production, restricting intake of grazing cows to 80% of that required to achieve spring grazing targets for postgrazing sward height for up to 6 wk may be used as a method of managing short-term pasture deficits on farm with minimal effects on total lactation performance.


Subject(s)
Cattle/physiology , Milk Proteins/metabolism , Milk/metabolism , Animal Feed/analysis , Animals , Body Weight , Dairying , Diet/veterinary , Female , Lactation , Milk/chemistry , Poaceae , Random Allocation , Seasons
3.
J Dairy Sci ; 102(10): 8907-8918, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31351717

ABSTRACT

The objective of this study was to compare mid-infrared reflectance spectroscopy (MIRS) analysis of milk and near-infrared reflectance spectroscopy (NIRS) analysis of feces with regard to their ability to predict the dry matter intake (DMI) of lactating grazing dairy cows. A data set comprising 1,074 records of DMI from 457 cows was available for analysis. Linear regression and partial least squares regression were used to develop the equations using the following variables: (1) milk yield (MY), fat percentage, protein percentage, body weight (BW), stage of lactation (SOL), and parity (benchmark equation); (2) MIRS wavelengths; (3) MIRS wavelengths, MY, fat percentage, protein percentage, BW, SOL, and parity; (4) NIRS wavelengths; (5) NIRS wavelengths, MY, fat percentage, protein percentage, BW, SOL, and parity; (6) MIRS and NIRS wavelengths; and (7) MIRS wavelengths, NIRS wavelengths, MY, fat percentage, protein percentage, BW, SOL, and parity. The equations were validated both within herd using animals from similar experiments and across herds using animals from independent experiments. The accuracy of equations was greater for within-herd validation compared with across-herds validation. Across-herds validation was deemed the more suitable method to assess equations for robustness and real-world application. The benchmark equation was more accurate [coefficient of determination (R2) = 0.60; root mean squared error (RMSE) = 1.68 kg] than MIRS alone (R2 = 0.30; RMSE = 2.23 kg) or NIRS alone (R2 = 0.16; RMSE = 2.43 kg). The combination of the benchmark equation with MIRS (R2 = 0.64; RMSE = 1.59 kg) resulted in slightly superior fitting statistics compared with the benchmark equation alone. The combination of the benchmark equation with NIRS (R2 = 0.58; RMSE = 1.71 kg) did not result in a more accurate prediction equation than the benchmark equation. The combination of MIRS and NIRS wavelengths resulted in superior fitting statistics compared with either method alone (R2 = 0.36; RMSE = 2.15 kg). The combination of the benchmark equation and MIRS and NIRS wavelengths resulted in the most accurate equation (R2 = 0.68; RMSE = 1.52 kg). A further analysis demonstrated that Holstein-Friesian cows could predict the DMI of Jersey × Holstein-Friesian crossbred cows using both MIRS and NIRS. Similarly, the Jersey × Holstein-Friesian animals could predict the DMI of Holstein-Friesian cows using both MIRS and NIRS. The equations developed in this study have the capacity to predict DMI of grazing dairy cows. From a practicality perspective, MIRS in combination with variables in the benchmark equation is the most suitable equation because MIRS is currently used on all milk-recorded milk samples from dairy cows.


Subject(s)
Cattle , Diet/veterinary , Herbivory , Spectrophotometry, Infrared/veterinary , Animals , Body Weight , Eating , Feces/chemistry , Female , Lactation , Least-Squares Analysis , Linear Models , Milk , Pregnancy , Spectrophotometry, Infrared/methods
4.
J Dairy Sci ; 102(2): 1247-1256, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30580955

ABSTRACT

Interest is growing in the use of by-products as economical sources of nutrients that complement grazed grass, particularly at times when grass supply is insufficient to meet the nutritional demands of lactating dairy cattle. The objective of this research was to assess the effect of the amount of by-product inclusion and concentrate feeding rate on pasture dry matter intake, milk production and composition, and N excretion from spring-calving cows grazing summer pasture during mid-late lactation. Forty-eight Holstein Friesian dairy cows were randomly assigned to 1 of 4 dietary treatments in a 2 × 2 factorial design. Cows were grazed in one group on a perennial ryegrass-based sward, with pelleted concentrates offered twice daily during milking over a 63-d experimental period. The dietary treatments were 3 kg of concentrate containing 35% by-products; 6 kg of concentrate containing 35% by-products; 3 kg of concentrate containing 95% by-products; and 6 kg of concentrate containing 95% by-products on a fresh matter basis. The by-products used were soybean hulls, palm kernel expeller, and maize dried distillers grains with solubles, included in equal proportions on a dry matter basis. Pasture dry matter intake (14.5 kg/d) was not affected by the amount of by-product inclusion or feeding rate. By-product inclusion had no effect on milk yield (27.1 kg/d) or milk solids (MS) yield (2.0 kg/d). Cows offered 6 kg of concentrate had a greater milk (+1.6 kg/d) and MS (+0.13 kg/d) yield, consumed more N (+0.08 kg/d), and excreted a lower proportion of N in the milk (0.25 vs. 0.27) and feces (0.39 vs. 0.41) and a higher proportion in the urine (0.39 vs. 0.32) compared with cows offered 3 kg of by-product-based concentrate. In conclusion, by-products can be included at up to 95% of the concentrate fed to cows grazing pasture without affecting pasture dry matter intake, milk production or composition, or N excretion. Cows offered 6 kg of concentrates produced more milk and MS than cows offered 3 kg but had higher urinary N excretion. Economics of this yield response will depend on milk and concentrate prices.


Subject(s)
Animal Feed/analysis , Cattle/physiology , Lolium/metabolism , Milk/chemistry , Nitrogen/analysis , Animals , Cattle/growth & development , Diet/veterinary , Feces/chemistry , Feeding Behavior , Female , Lactation , Lolium/chemistry , Milk/metabolism , Nitrogen/metabolism , Plant Weeds/chemistry , Plant Weeds/metabolism , Seasons
5.
J Dairy Sci ; 101(7): 6655-6674, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29680642

ABSTRACT

Ruminant production systems are important contributors to anthropogenic methane (CH4) emissions, but there are large uncertainties in national and global livestock CH4 inventories. Sources of uncertainty in enteric CH4 emissions include animal inventories, feed dry matter intake (DMI), ingredient and chemical composition of the diets, and CH4 emission factors. There is also significant uncertainty associated with enteric CH4 measurements. The most widely used techniques are respiration chambers, the sulfur hexafluoride (SF6) tracer technique, and the automated head-chamber system (GreenFeed; C-Lock Inc., Rapid City, SD). All 3 methods have been successfully used in a large number of experiments with dairy or beef cattle in various environmental conditions, although studies that compare techniques have reported inconsistent results. Although different types of models have been developed to predict enteric CH4 emissions, relatively simple empirical (statistical) models have been commonly used for inventory purposes because of their broad applicability and ease of use compared with more detailed empirical and process-based mechanistic models. However, extant empirical models used to predict enteric CH4 emissions suffer from narrow spatial focus, limited observations, and limitations of the statistical technique used. Therefore, prediction models must be developed from robust data sets that can only be generated through collaboration of scientists across the world. To achieve high prediction accuracy, these data sets should encompass a wide range of diets and production systems within regions and globally. Overall, enteric CH4 prediction models are based on various animal or feed characteristic inputs but are dominated by DMI in one form or another. As a result, accurate prediction of DMI is essential for accurate prediction of livestock CH4 emissions. Analysis of a large data set of individual dairy cattle data showed that simplified enteric CH4 prediction models based on DMI alone or DMI and limited feed- or animal-related inputs can predict average CH4 emission with a similar accuracy to more complex empirical models. These simplified models can be reliably used for emission inventory purposes.


Subject(s)
Cattle/metabolism , Diet , Methane/analysis , Methane/metabolism , Sulfur Hexafluoride/metabolism , Animal Feed , Animals , Environmental Pollution , Ruminants , Uncertainty
6.
Br J Nutr ; 117(7): 951-963, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28443527

ABSTRACT

An experiment was conducted to determine: (1) the effect of excess maternal I supplementation on the thyroid hormone status of the ewe and her progeny; (2) potential mechanisms underpinning the failure of passive transfer associated with excess I and (3) the growing lambs' response to natural gastrointestinal infection. Twin-bearing ewes received one of two treatments (n 32/treatment group): basal diet (C) or C plus 26·6 mg of iodine/ewe per d (I), supplied as calcium iodate. Ewes were individually fed from day 119 of gestation to parturition. Progeny of I ewes had lower (P<0·01) serum IgG concentrations from 24 h to 28 d postpartum but higher serum IgG concentrations at day 70 postpartum (P<0·05). I supplementation increased the relative expression of Fc receptor, IgA, IgM high affinity and polymeric Ig receptor in the ileum of the lamb at 24 h postpartum; however, thyroid hormone receptor-ß (THRB) and ß-2-microglobulin (B2M) expression declined (P<0·05). Progeny of I ewes had higher growth rates to weaning (P<0·05) and lower faecal egg count (FEC) for Nematodirus battus (P<0·05) between weeks 6 and 10 postpartum. In conclusion, excess maternal I supplementation negatively affected the thyroid hormone status, serum IgG concentration, ileal morphology and the gene expression of THRB and B2M in the ileum and ras-related protein (RAB) RAB25 and the mucin gene (MUC) MUC1 in the duodenum of the lamb postpartum. These effects were followed by an enhancement of average daily gain and lower N. battus FEC in the pre-weaning period of I-supplemented lambs.


Subject(s)
Colostrum/immunology , Dietary Supplements , Immunity, Maternally-Acquired , Iodine/therapeutic use , Maternal Nutritional Physiological Phenomena , Sheep Diseases/prevention & control , Strongylida Infections/veterinary , Animals , Animals, Newborn , Colostrum/chemistry , Dietary Supplements/adverse effects , Female , Gene Expression Regulation, Developmental , Ileum/growth & development , Ileum/immunology , Ileum/metabolism , Ileum/pathology , Immunoglobulin G/analysis , Immunoglobulin G/biosynthesis , Intestinal Mucosa/growth & development , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Iodine/adverse effects , Male , Nematodirus/immunology , Nematodirus/isolation & purification , Parasite Egg Count/veterinary , Pregnancy , Random Allocation , Sheep , Sheep Diseases/immunology , Sheep Diseases/metabolism , Sheep Diseases/parasitology , Sheep, Domestic , Strongylida Infections/immunology , Strongylida Infections/parasitology , Strongylida Infections/prevention & control , Thyroid Hormone Receptors beta/genetics , Thyroid Hormone Receptors beta/metabolism , Weight Gain , beta 2-Microglobulin/genetics , beta 2-Microglobulin/metabolism
7.
J Dairy Sci ; 100(2): 1055-1062, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27988110

ABSTRACT

The objective of this study was to investigate the effects of replacing barley and soybean meal with increasing levels of by-products on production, digestive, and metabolic parameters in early-mid lactation dairy cows offered perennial ryegrass-based pasture. Forty-eight (32 multiparous and 16 primiparous) dairy cows that were 64 ± 24 d in milk were assigned to 1 of 4 pasture-based dietary treatments (n = 12) in a randomized block design experiment that ran for 70 d. Treatments consisted of a perennial ryegrass-based pasture and 1 of 4 supplementary concentrates: BP35, BP55, BP75, and BP95 containing 35, 55, 75, and 95% by-products, respectively, in the concentrate on a dry matter basis. The by-products used were soyhulls, dried distillers grains, and palm kernel extract in equal proportions. Barley and soybean meal were replaced as by-product inclusion level increased. In this study, intakes of pasture dry matter (15.7 kg) and total dry matter (21.1 kg) were not affected by treatment. Similarly, milk production parameters (milk yield, milk composition, somatic cell count, and urea) were not different between treatments. Unsaturated fatty acids were lower in the milk of cows offered BP35 and BP55 compared with those offered BP75 and BP95. Concentrations of ß-hydroxybutyrate, nonesterified fatty acids, and other blood metabolites were within normal range and did not differ between treatments, and cow body condition score and body weight were also not different. Equally, N was unaffected by diet. Blood urea N was lower in the BP75 group compared with BP35. This study demonstrated that barley and soybean meal can be replaced with soyhulls, dried distillers grains, and palm kernel extract without affecting milk production, digestive, or metabolic parameters in dairy cows offered a pasture-based diet.


Subject(s)
Diet/veterinary , Lactation , Rumen/metabolism , Animal Feed , Animals , Cattle , Female , Fermentation , Milk/metabolism
8.
J Dairy Sci ; 98(1): 338-48, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25465538

ABSTRACT

The objective of this study was to compare the milk production, dry matter intake, and energy partitioning of autumn-calving Holstein-Friesian cows offered a high or low amount of concentrate using 1 of 2 feeding strategies. One hundred and eight autumn-calving Holstein-Friesian cows were blocked based on milk production data from wk 3 and 4 of lactation, and were divided into low-, medium-, and high-milk yield subgroups. Cows were randomly assigned to 1 of 4 treatments (n=27) in a 2×2 factorial design. Treatment factors were concentrate feeding amount, high concentrate=7.0 (Hi) or low concentrate=4.0kg of DM/cow per day (Lo), and concentrate feeding strategy, flat rate (FR) or group-fed to yield (GFY). In the GFY treatments, cows were allocated concentrate based on their milk yield in the third and fourth weeks of lactation. The lowest-yielding cows (n=9) received 5.3 and 2.3kg of DM of concentrate on the Hi and Lo treatments respectively, the highest-yielding cows (n=9) received 8.7 and 5.7kg of DM of concentrate on the Hi and Lo treatments respectively, and the average yield cows received the same amount of concentrate as the corresponding FR group (i.e., 7.0 and 4.0kg of DM of concentrate on the Hi and Lo treatments, respectively). The proportion of forage in the diet was 63% of total dry matter intake (TDMI) for the Hi treatment and 75% of TDMI for the Lo treatment. No significant interaction was noted between concentrate feeding amount and concentrate feeding strategy for dry matter intake or milk yield. Cows on the Hi treatment had a higher TDMI (18.7±0.36kg/cow per day) compared with cows on the Lo treatment (15.8±0.36kg/cow per day). The milk yield of cows offered the Hi treatment was 1.3kg/cow per day higher than the milk yield of cows on the Lo treatment (23.8±0.31kg/cow per day). Milk solids yield was 0.10kg/cow per day higher on the Hi treatment than on the Lo treatment (1.83±0.03kg of DM/cow per day). Cows on the Hi treatment had an estimated net energy demand of 18.0±0.38 UFL (unité fourragère lait)/cow per day and a net energy intake of 17.6±0.33 UFL/cow per day during the experimental period. Cows on the Lo treatment had an energy demand of 16.8±0.38 UFL/cow per day and an energy intake of 14.9±0.33 UFL/cow per day. No significant difference in TDMI, milk yield, milk solids yield, or energy balance was observed between the FR and GFY treatments. By increasing the total amount of concentrate offered, cows had higher TDMI and energy intake, which resulted in increased milk production and reduced negative energy balance and body condition score loss.


Subject(s)
Cattle/physiology , Diet/veterinary , Eating/physiology , Energy Metabolism/physiology , Lactation/physiology , Milk/metabolism , Animal Feed , Animal Husbandry , Animals , Diet/methods , Energy Intake , Female , Random Allocation , Seasons , Silage
9.
J Dairy Sci ; 97(5): 3028-41, 2014 May.
Article in English | MEDLINE | ID: mdl-24582439

ABSTRACT

Postgrazing sward height (PGSH) can be altered to adjust the allowance of grass in the dairy cow's diet. This study aimed to investigate the short-term dairy cow response to a change in postgrazing height in early lactation. Ninety Holstein Friesian spring-calving cows were randomly assigned across 3 postgrazing height treatments (n=30): 2.7 cm (severe), 3.5 cm (low), and 4.2 cm (moderate) from February 14 to April 24, 2011. From April 25, animals were rerandomized within each treatment to graze across 2 postgrazing heights: 3.5 cm (low) or 4.5 cm (high). Animal production measurements were taken from April 4 to 24 (measurement period 1; M1) and from April 25 to May 15 (measurement period 2; M2). The 6 treatments (n=15) of M2 were severe-low, severe-high, low-low, low-high, moderate-low, and moderate-high. During M1, increasing postgrazing height from severe to low to moderate linearly increased daily milk yield (21.5, 24.6 and 25.8 kg/cow per day) and grass dry matter intake (GDMI; 13.2, 14.9, and 15.8 kg of DM/cow per day). Milk solids yield was reduced in the severe (-1,518 g/cow per day) treatment when compared with the low and moderate cows (1,866 g/cow per day, on average). The milk yield (MY) response to change in PGSH between M1 and M2 (VM1-M2) was established using VM1-M2 MY=-1.27-1.89 × PGSHM1 + 1.51 × PGSHM2 (R(2)=0.64). The MY response associated with each treatment between M1 and M2 (3 wk) were -1.03 kg/cow for severe-low, 0.68 kg/cow for severe-high, -2.56 kg/cow for low-low, -1.11 kg/cow for low-high, -4.17 kg/cow for moderate-low, and -2.39 kg/cow for moderate-high. The large increase in energy intake in severe-high between M1 and M2 was achieved through higher GDMI per minute and GDMI per bite, which supported the positive change in MY. Treatments low-high, moderate-low, and moderate-high recorded the highest overall cumulative milk yield (74 kg of milk solids/cow) over the 6-wk period, whereas severe-low and severe-high had the lowest (65 kg of MS/cow). From the animal responses observed in the present study, imposing a postgrazing height of 3.5 cm in early spring provides the opportunity to increase postgrazing height thereafter; the cow increases GDMI accordingly and converts the additional energy intake into milk output. The equations established in this paper provide a decision tool for dairy farmers to anticipate the animal response when postgrazing height is altered or maintained around the tenth week of lactation.


Subject(s)
Animal Feed/analysis , Cattle/physiology , Diet/veterinary , Feeding Behavior/physiology , Lactation/physiology , Poaceae , Animal Nutritional Physiological Phenomena , Animals , Dairying , Energy Intake , Female , Milk , Seasons
10.
J Dairy Sci ; 97(6): 3906-17, 2014.
Article in English | MEDLINE | ID: mdl-24704226

ABSTRACT

The superior milk production efficiency of Jersey (JE) and Jersey × Holstein-Friesian (JE × HF) cows compared with Holstein-Friesian (HF) has been widely published. The biological differences among dairy cow genotypes, which could contribute to the milk production efficiency differences, have not been as widely studied however. A series of component studies were conducted using cows sourced from a longer-term genotype comparison study (JE, JE × HF, and HF). The objectives were to (1) determine if differences exist among genotypes regarding gastrointestinal tract (GIT) weight, (2) assess and quantify whether the genotypes tested differ in their ability to digest perennial ryegrass, and (3) examine the relative abundance of specific rumen microbial populations potentially relating to feed digestibility. Over 3 yr, the GIT weight was obtained from 33 HF, 35 JE, and 27 JE × HF nonlactating cows postslaughter. During the dry period the cows were offered a perennial ryegrass silage diet at maintenance level. The unadjusted GIT weight was heavier for the HF than for JE and JE × HF. When expressed as a proportion of body weight (BW), JE and JE × HF had a heavier GIT weight than HF. In vivo digestibility was evaluated on 16 each of JE, JE × HF, and HF lactating dairy cows. Cows were individually stalled, allowing for the total collection of feces and were offered freshly cut grass twice daily. During this time, daily milk yield, BW, and dry matter intake (DMI) were greater for HF and JE × HF than for JE; milk fat and protein concentration ranked oppositely. Daily milk solids yield did not differ among the 3 genotypes. Intake capacity, expressed as DMI per BW, tended to be different among treatments, with JE having the greatest DMI per BW, HF the lowest, and JE × HF being intermediate. Production efficiency, expressed as milk solids per DMI, was higher for JE than HF and JE × HF. Digestive efficiency, expressed as digestibility of dry matter, organic matter, N, neutral detergent fiber, and acid detergent fiber, was higher for JE than HF. In grazing cows (n=15 per genotype) samples of rumen fluid, collected using a transesophageal sampling device, were analyzed to determine the relative abundance of rumen microbial populations of cellulolytic bacteria, protozoa, and fungi. These are critically important for fermentation of feed into short-chain fatty acids. A decrease was observed in the relative abundance of Ruminococcus flavefaciens in the JE rumen compared with HF and JE × HF. We can deduce from this study that the JE genotype has greater digestibility and a different rumen microbial population than HF. Jersey and JE × HF cows had a proportionally greater GIT weight than HF. These differences are likely to contribute to the production efficiency differences among genotypes previously reported.


Subject(s)
Cattle/microbiology , Cattle/physiology , Digestion , Gastrointestinal Tract/microbiology , Rumen/microbiology , Animal Nutritional Physiological Phenomena , Animals , Cattle/genetics , Female , Gastrointestinal Tract/anatomy & histology , Gastrointestinal Tract/physiology , Genotype , Lolium/chemistry , Microbiota , Rumen/physiology
11.
Animal ; 18(5): 101150, 2024 May.
Article in English | MEDLINE | ID: mdl-38669749

ABSTRACT

The inclusion of companion forages in the diet of ruminant animals is gaining popularity in temperate regions due to observed improvements in animal performance. The aim of this study was to assess the effect of diet type on DM intake (DMI) and organic matter digestibility (OMD) in sheep. Furthermore, the effect of sward type on diet nutritive quality was investigated. Five dietary treatments were investigated using a 5 × 5 Latin square design experiment: Perennial ryegrass (Lolium perenne L.; PRG) only or PRG plus white clover (Trifolium repens L.;PRG + WC), red clover (Trifolium pratense L.; PRG + RC), chicory (Chicorium intybus L.; PRG + Chic) or plantain (Plantago lanceolata L.; PRG + Plan) at a ratio of 75% PRG and 25% of the respective companion forage and 100% PRG for the grass only treatment on a DM basis. Twenty Belclare castrated male (wether) sheep were housed in metabolism crates across five feeding periods. Individual DMI and faecal output were recorded daily and digestibility parameters were subsequently calculated. Results show that the inclusion of any companion forage increased DMI (kg/day DM) which ranged from 1.55 ± 0.038 (PRG) to 1.76 ± 0.038 (PRG + Chic) (P < 0.001). The PRG + WC (825 ± 1.1), PRG + RC (823 ± 1.1) and PRG + Chic (826 ± 1.1) diets had a greater in vitro OMD (g/kg DM) when compared to PRG (819 ± 1.1) or PRG + Plan (816 ± 1.1) (P < 0.001). Furthermore, the PRG + Chic (830 ± 2.9) diet had a greater in vivo OMD (g/kg DM) (P < 0.01) when compared to the PRG, PRG + RC, and PRG + Plan diets. Regression analysis showed that in vitro estimates moderately reflected in vivo measurements (r2 = 0.61). The inclusion of any companion forage increased dietary CP content and reduced the proportion of NDF in the diet. Crude protein concentration increased by an average of 16.5 g/kg DM and NDF content was reduced by 25.3 g/kg DM, on average, with companion forage inclusion (P < 0.001). Results suggest that binary sward mixtures benefit pasture-based sheep production systems, boosting sward quality, aiding increased DM intakes of a more digestible diet in the summer period.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Diet , Digestion , Lolium , Animals , Digestion/physiology , Animal Feed/analysis , Diet/veterinary , Male , Sheep/physiology , Trifolium , Cichorium intybus/chemistry , Eating , Nutritive Value , Feces/chemistry , Plantago
12.
Animal ; 18(5): 101140, 2024 May.
Article in English | MEDLINE | ID: mdl-38626708

ABSTRACT

Methane (CH4) is a potent gas produced by ruminants, and new measurement techniques are required to generate large datasets suitable for genetic analysis. One such technique are portable accumulation chambers (PAC), a short-term sampling method. The objectives of the current study were to explore the relationship between CH4 and carbon dioxide (CO2) output measured using both PAC and respiration chambers (RC) in growing lambs, and separately investigate the relationship among CH4, CO2 and measured ad libitum DM intake (DMI). Methane, CO2 and DMI were measured on 30 Suffolk and 30 Texel ewe lambs (age 253 ± 12 days) using the RC and PAC sequentially. The experiment was conducted over a 14-day period, with DMI measured from days 1 to 14; measurements in RC were conducted from days 10 to 12, while measurements in PAC were taken twice, the day immediately prior to the lambs entering the RC (day 9; PAC Pre-RC) and on the day lambs exited the RC (day 13; PAC Post-RC). Greater CH4 and CO2 output was measured in the RC than in the PAC (P < 0.01); similarly mean CH4 yield was greater when measured in the RC (15.39 ± 0.452 g CH4/kg DMI) compared to PAC (8.01 ± 0.767 g CH4/kg DMI). A moderate correlation of 0.37 was found between CH4 output measured in PAC Pre-RC and the RC, the corresponding regression coefficient of CH4 output measured in the RC regressed on CH4 output measured in PAC Pre-RC was close to unity (0.74; SE 0.224). The variance of CH4 and CO2 output within the measurement technique did not differ from each other (P > 0.05). Moderate to strong correlations were found between CH4 and CO2 per kg of live weight and CH4 and CO2 yield. Results from this study highlight the suitability of PAC as a ranking tool to rank animals based on their gaseous output when compared to the RC. However, repeated measurements separated by several days may be beneficial if precise rankings are required. Given the close to unity regression coefficient of CH4 output measured in the RC regressed on CH4 output measured in PAC Pre-RC suggests that PAC could also be potentially used to estimate absolute CH4 output; however, further research is required to substantiate this claim. When DMI is unknown, CH4 and CO2 per kg of live weight are a suitable alternative to the measurement of CH4 and CO2 yield.


Subject(s)
Carbon Dioxide , Greenhouse Gases , Methane , Animals , Carbon Dioxide/analysis , Carbon Dioxide/metabolism , Methane/metabolism , Greenhouse Gases/analysis , Female , Sheep/physiology
13.
J Appl Microbiol ; 114(3): 626-35, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23163953

ABSTRACT

AIMS: Anaerobic rumen fungi (Neocallimastigales) play important roles in the breakdown of complex, cellulose-rich material. Subsequent decomposition products are utilized by other microbes, including methanogens. The aim of this study was to determine the effects of dietary changes on anaerobic rumen fungi diversity. METHODS AND RESULTS: Altered diets through increasing concentrate/forage (50 : 50 vs 90 : 10) ratios and/or the addition of 6% soya oil were offered to steers and the Neocallimastigales community was assessed by PCR-based fingerprinting with specific primers within the barcode region. Both a decrease in fibre content and the addition of 6% soya oil affected Neocallimastigales diversity within solid and liquid rumen phases. The addition of 6% soya oil decreased species richness. Assemblages were strongly affected by the addition of 6% soya oil, whereas unexpectedly, the fibre decrease had less effect. Differences in volatile fatty acid contents (acetate, propionate and butyrate) were significantly associated with changes in Neocallimastigales assemblages between the treatments. CONCLUSIONS: Diet clearly influences Neocallimastigales assemblages. The data are interpreted in terms of interactions with other microbial groups involved in fermentation processes within the rumen. SIGNIFICANCE AND IMPACT OF THE STUDY: Knowledge on the influence of diet on anaerobic fungi is necessary to understand changes in microbial processes occurring within the rumen as this may impact on other rumen processes such as methane production.


Subject(s)
Animal Feed , Cattle/microbiology , Neocallimastigales/metabolism , Rumen/microbiology , Animals , DNA Barcoding, Taxonomic , DNA Fingerprinting , DNA, Fungal/analysis , Dietary Fiber/administration & dosage , Fatty Acids, Volatile/metabolism , Fermentation , Male , Methane/metabolism , Microbiota , Neocallimastigales/classification , Soybean Oil/administration & dosage
14.
J Appl Microbiol ; 111(6): 1426-35, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21923746

ABSTRACT

AIMS: Methane emissions from ruminants are a significant contributor to global greenhouse gas production. The aim of this study was to examine the effect of diet on microbial communities in the rumen of steers. METHODS AND RESULTS: The effects of dietary alteration (50 : 50 vs 90 : 10 concentrate-forage ratio, and inclusion of soya oil) on methanogenic and bacterial communities in the rumen of steers were examined using molecular fingerprinting techniques (T-RFLP and automated ribosomal intergenic spacer analysis) and real-time PCR. Bacterial diversity was greatly affected by diet, whereas methanogen diversity was not. However, methanogen abundance was significantly reduced (P = 0.009) in high concentrate-forage diets and in the presence of soya oil (6%). In a parallel study, reduced methane emissions were observed with these diets. CONCLUSIONS: The greater effect of dietary alteration on bacterial community in the rumen compared with the methanogen community may reflect the impact of substrate availability on the rumen bacterial community. This resulted in altered rumen volatile fatty acid profiles and had a downstream effect on methanogen abundance, but not diversity. SIGNIFICANCE AND IMPACT OF THE STUDY: Understanding how rumen microbial communities contribute to methane production and how these microbes are influenced by diet is essential for the rational design of methane mitigation strategies from livestock.


Subject(s)
Bacteria/genetics , Diet/veterinary , Methane/biosynthesis , Rumen/microbiology , Soybean Oil/chemistry , Animals , Archaea/classification , Archaea/genetics , Bacteria/classification , Biodiversity , Cattle , DNA Fingerprinting , DNA, Archaeal/genetics , DNA, Bacterial/genetics , Fatty Acids, Volatile/analysis , Male , Polymorphism, Restriction Fragment Length
15.
J Dairy Sci ; 94(2): 1032-44, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21257073

ABSTRACT

Nitrogen (N) efficiency is one of the key drivers of environmentally and economically sustainable agricultural production systems. An N balance model was developed, evaluated, and validated to assess N use efficiency and N surplus and to predict N losses from contrasting grass-based dairy production systems in Ireland. Data from a 5-yr study were used to evaluate and validate the model. Grass-based and high-concentrate production systems combined with 3 divergent strains of Holstein-Friesian (HF) dairy cows-high-production North American (HP), high-durability North American (HD), and New Zealand (NZ)-were evaluated. As concentrate input increased, N surplus per hectare increased and N use efficiency per hectare decreased (23 and 10%, respectively). When the N required to rear replacement animals to maintain the production system was considered, the N surplus of the HP genetic strain was greater (156 kg of N/cow) than that of the HD (140 kg of N/cow) or the NZ (128 kg of N/cow). The model estimated N leaching of 8.1mg of NO(3)-N/L, similar to that measured by others at the same site. The model creates awareness of methods and indicators available to assess the most suitable and environmentally sustainable grass based dairy production systems.


Subject(s)
Dairying/instrumentation , Models, Biological , Nitrogen/metabolism , Animals , Cattle , Computer Simulation , Diet/veterinary , Female , Poaceae/metabolism
16.
J Dairy Sci ; 94(4): 1941-51, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21426985

ABSTRACT

The objective of the present study was to compare the enteric methane (CH4) emissions and milk production of spring-calving Holstein-Friesian cows offered either a grazed perennial ryegrass diet or a total mixed ration (TMR) diet for 10 wk in early lactation. Forty-eight spring-calving Holstein-Friesian dairy cows were randomly assigned to 1 of 2 nutritional treatments for 10 wk: 1) grass or 2) TMR. The grass group received an allocation of 17 kg of dry matter (DM) of grass per cow per day with a pre-grazing herbage mass of 1,492 kg of DM/ha. The TMR offered per cow per day was composed of maize silage (7.5 kg of DM), concentrate blend (8.6 kg of DM), grass silage (3.5 kg of DM), molasses (0.7 kg of DM), and straw (0.5 kg of DM). Daily CH4 emissions were determined via the emissions from ruminants using a calibrated tracer technique for 5 consecutive days during wk 4 and 10 of the study. Simultaneously, herbage dry matter intake (DMI) for the grass group was estimated using the n-alkane technique, whereas DMI for the TMR group was recorded using the Griffith Elder feeding system. Cows offered TMR had higher milk yield (29.5 vs. 21.1 kg/d), solids-corrected milk yield (27.7 vs. 20.1 kg/d), fat and protein (FP) yield (2.09 vs. 1.54 kg/d), bodyweight change (0.54 kg of gain/d vs. 0.37 kg of loss/d), and body condition score change (0.36 unit gain vs. 0.33 unit loss) than did the grass group over the course of the 10-wk study. Methane emissions were higher for the TMR group than the grass group (397 vs. 251 g/cow per day). The TMR group also emitted more CH4 per kg of FP (200 vs. 174 g/kg of FP) than did the grass group. They also emitted more CH4 per kg of DMI (20.28 vs. 18.06 g/kg of DMI) than did the grass group. In this study, spring-calving cows, consuming a high quality perennial ryegrass diet in the spring, produced less enteric CH4 emissions per cow, per unit of intake, and per unit of FP than did cows offered a standard TMR diet.


Subject(s)
Animal Nutritional Physiological Phenomena , Cattle/physiology , Diet/veterinary , Eating/physiology , Lactation/physiology , Lolium/metabolism , Methane/biosynthesis , Animals , Cattle/metabolism , Female , Milk/metabolism , Pregnancy , Seasons
17.
Animal ; 15(6): 100258, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34126413

ABSTRACT

Sheep are often used as a proxy for dairy cows when measuring the digestibility of a feed. In recent years grassland management guidelines for ruminant animals have been re-evaluated in accordance with the progression in animal genetics and the acknowledgement that genetic potential has an influence on both feed intake and digestibility. Recommended pre-grazing herbage mass (HM) targets are now much lower with improved perennial ryegrass varieties available for grazing swards. The objective of this study was to compare the in vivo digestibility of perennial ryegrass in wether sheep and lactating dairy cows. The experimental design was selected to measure the effect of animal species (cows, sheep), sward HM measured cutting herbage at 4 cm above ground level (low: 1 700 kg DM/ha and high: 4 000 kg DM/ha) and season (Spring: Apr-May, Summer: Jul-Aug) on the digestibility of perennial ryegrass. Each HM treatment was offered to each animal within species and season for 12 d using a 2 HM × 2 period changeover Latin square design. There were eight cows and eight sheep, so there were four 2 × 2 Latin squares for each animal species (two) at each season (two), giving 64 observations. During each 12 d experimental period, the first 6 d were used for adaptation (adaptation phase) and the final 6 d were used for measurement (measurement phase). In vivo organic matter digestibility (OMD) in spring did not differ between animal species but in summer sheep had higher in vivo OMD than cows. The results described herein highlight the suitability of wether sheep as an alternative to dairy cows for determining the digestibility of perennial ryegrass in spring but not in summer. Stage of growth of the plant, which is intrinsically linked to season, should be considered as results show that digestibility in the ruminant was affected by season but not differentially affected by changing sward HM.


Subject(s)
Lolium , Animal Feed/analysis , Animals , Cattle , Diet , Female , Lactation , Male , Milk , Sheep
18.
J Dairy Sci ; 93(10): 4976-85, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20855032

ABSTRACT

Increasing milk production from pasture while increasing grass dry matter intake (GDMI) and lowering methane (CH(4)) emissions are key objectives of low-cost dairy production systems. It was hypothesized that offering swards of low herbage mass with increased digestibility leads to increased milk output. A grazing experiment was undertaken to investigate the effects of varying levels of HM on CH(4) emissions, GDMI and milk production of grazing dairy cows during the mid-season grazing period (June to July). Prior to the experiment, 46 Holstein-Friesian dairy cows (46 d in milk) were randomly assigned to 1 of 2 treatments (n=23) in a randomized block design. The 2 treatments consisted of 2 target pregrazing HM: 1,000 kg of dry matter (DM)/ha (low herbage mass, LHM) or 2,200 kg of DM/ha (high herbage mass, HHM). The experimental period lasted 2 mo from June 1 until July 31. Within the experimental period, there were 2 measurement periods, measurement 1 (M1) and measurement 2 (M2), where CH(4) emissions, GDMI, and milk production were measured. Mean herbage mass throughout the measurement periods was 1,075 kg of DM/ha and 1,993 kg of DM/ha for the LHM and HHM treatments, respectively. Grass quality in terms of organic matter digestibility was significantly higher for the LHM treatment in M2 (+12 g/kg of DM). In M1, the effect of herbage mass on grass quality was approaching significance in favor of the LHM treatment. Herbage mass did not significantly affect milk production during the measurement periods. Cows grazing the LHM swards had increased GDMI in M1 (+1.5 kg of DM) compared with cows grazing the HHM swards; no difference in GDMI was observed in M2. Grazing HHM swards increased CH(4) production per cow per day (+42 g), per kilogram of milk yield (+3.5 g/kg of milk), per kilogram of milk solids (+47 g/kg of milk solids), and per kilogram of GDMI (+3.1 g/kg of GDMI) in M2. Cows grazing the HHM swards lost a greater proportion of their gross energy intake as CH(4) during both measurement periods (+0.9% and +1% for M1 and M2, respectively). It was concluded that grazing LHM swards would increase grass quality with a concurrent reduction in CH(4) emissions.


Subject(s)
Cattle/physiology , Diet/veterinary , Eating , Lactation/physiology , Methane/biosynthesis , Poaceae/metabolism , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Female , Milk/chemistry , Milk/metabolism , Seasons , Time Factors
19.
Animal ; 14(11): 2288-2297, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32381153

ABSTRACT

Breeding values for feed intake and feed efficiency in beef cattle are generally derived indoors on high-concentrate (HC) diets. Within temperate regions of north-western Europe, however, the majority of a growing beef animal's lifetime dietary intake comes from grazed grass and grass silage. Using 97 growing beef cattle, the objective of the current study was to assess the repeatability of both feed intake and feed efficiency across 3 successive dietary test periods comprising grass silage plus concentrates (S+C), grazed grass (GRZ) and a HC diet. Individual DM intake (DMI), DMI/kg BW and feed efficiency-related parameters, residual feed intake (RFI) and gain to feed ratio (G : F) were assessed. There was a significant correlation for DMI between the S+C and GRZ periods (r = 0.32; P < 0.01) as well as between the S+C and HC periods (r = 0.41; P < 0.001), whereas there was no association for DMI between the GRZ and HC periods. There was a significant correlation for DMI/kg BW between the S+C and GRZ periods (r = 0.33; P < 0.01) and between the S+C and HC periods (r = 0.40; P < 0.001), but there was no association for the trait between the GRZ and HC periods. There was a significant correlation for RFI between the S+C and GRZ periods (r = 0.25; P < 0.05) as well as between S+C and HC periods (r = 0.25; P < 0.05), whereas there was no association for RFI between the GRZ and HC periods. Gain to feed ratio was not correlated between any of the test periods. A secondary aspect of the study demonstrated that traits recorded in the GRZ period relating to grazing bite rate, the number of daily grazing bouts and ruminating bouts were associated with DMI (r = 0.28 to 0.42; P < 0.05 - 0.001), DMI/kg BW (r = 0.36 to 0.45; P < 0.01 - 0.001) and RFI (r = 0.31 to 0.42; P < 0.05 - 0.001). Additionally, the number of ruminating boli produced per day and per ruminating bout were associated with G : F (r = 0.28 and 0.26, respectively; P < 0.05). Results from this study demonstrate that evaluating animals for both feed intake and feed efficiency indoors on HC diets may not reflect their phenotypic performance when consuming conserved forage-based diets indoors or when grazing pasture.


Subject(s)
Poaceae , Silage , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Eating , Europe , Feeding Behavior , Silage/analysis
20.
J Dairy Sci ; 92(10): 5212-23, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19762839

ABSTRACT

The objective of this study was to investigate the effect of level of 1) pregrazing herbage mass (HM) and 2) level of daily herbage allowance (DHA) on the performance and fatty acid (FA) composition of milk from grazing dairy cows. Sixty-eight Holstein-Friesian dairy cows were allocated to either a high or low pregrazing HM (1,700 vs. 2,400 kg of DM/ha; >40 mm), and within HM treatment, cows were further allocated to either a high or low DHA (16 vs. 20 kg of DM/d per cow; >40 mm) in a 2 x 2 factorial design. Pregrazing HM did not affect dry matter intake (17.5 +/- 0.75 kg/d), milk production (22.1 +/- 0.99 kg/d), milk composition (milk fat, 3.88 +/- 0.114%; milk protein, 3.28 +/- 0.051%), body weight (525 +/- 16 kg), or body condition score (2.65 +/- 0.064). Increasing DHA increased dry matter intake (+1.5 kg/d) but did not affect any other variable measured. Cows grazing the low HM or high DHA had a higher daily intake of total FA (+0.12 and +0.09 kg/d, respectively, for the low HM and high DHA), alpha-linolenic acid (LNA; +0.08 and +0.05 kg/d, respectively, for the low HM and high DHA), and linoleic acid (+0.01 for both the low HM and high DHA) compared with either the high HM or low DHA. Milk conjugated linoleic acid (cis-9, trans-11 isomer) was not affected by treatment (13.0 +/- 0.77 g/kg of total FA); however, large variation was recorded between individual animals (range from 5.9 to 20.6 g/kg of total FA). Milk concentrations of LNA were higher for animals offered the low HM (5.3 g/kg of total FA), but across treatments, milk concentrations of LNA were low (4.9 +/- 0.33 g/kg of total FA). The present study indicates that changes in HM and DHA do not have a great effect on the milk FA composition of grazing dairy cows. Further enhancement of the beneficial FA content in milk purely from changes in grazing strategy may be difficult when pasture quality is already high.


Subject(s)
Animal Feed/analysis , Cattle/physiology , Diet , Dietary Fats/administration & dosage , Fatty Acids/administration & dosage , Milk/chemistry , Animals , Eating , Fatty Acids/analysis , Female , Lactation/physiology , Linoleic Acids, Conjugated/analysis , alpha-Linolenic Acid/administration & dosage , alpha-Linolenic Acid/analysis
SELECTION OF CITATIONS
SEARCH DETAIL