Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
J Radiol Prot ; 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39362240

ABSTRACT

This paper outlines the process by which a medical gamma camera can be utilised to support assessment of internal radionuclides for the public. While hospital based gamma cameras are able to detect photopeaks, they are often limited to an energy range of 40-540 keV. However, radionuclides with photopeak energies above 540 keV can still be detected as the partial collection of photon energy increases the count rate at lower energies. By combining extensive mathematical modelling with empirical calibration of multiple gamma cameras it is possible to develop a linear correlation between the efficiency of counting point sources and the overall counting efficiency for the camera. Once established, a simple protocol can be used to characterise any gamma camera, using optimal system settings, and hence generate a system efficiency with sufficient accuracy to allow the camera to be used in a triage process to committed effective doses of 2 mSv. .

2.
Article in English | MEDLINE | ID: mdl-38699518

ABSTRACT

The personalised oncology paradigm remains challenging to deliver despite technological advances in genomics-based identification of actionable variants combined with the increasing focus of drug development on these specific targets. To ensure we continue to build concerted momentum to improve outcomes across all cancer types, financial, technological and operational barriers need to be addressed. For example, complete integration and certification of the 'molecular tumour board' into 'standard of care' ensures a unified clinical decision pathway that both counteracts fragmentation and is the cornerstone of evidence-based delivery inside and outside of a research setting. Generally, integrated delivery has been restricted to specific (common) cancer types either within major cancer centres or small regional networks. Here, we focus on solutions in real-world integration of genomics, pathology, surgery, oncological treatments, data from clinical source systems and analysis of whole-body imaging as digital data that can facilitate cost-effectiveness analysis, clinical trial recruitment, and outcome assessment. This urgent imperative for cancer also extends across the early diagnosis and adjuvant treatment interventions, individualised cancer vaccines, immune cell therapies, personalised synthetic lethal therapeutics and cancer screening and prevention. Oncology care systems worldwide require proactive step-changes in solutions that include inter-operative digital working that can solve patient centred challenges to ensure inclusive, quality, sustainable, fair and cost-effective adoption and efficient delivery. Here we highlight workforce, technical, clinical, regulatory and economic challenges that prevent the implementation of precision oncology at scale, and offer a systematic roadmap of integrated solutions for standard of care based on minimal essential digital tools. These include unified decision support tools, quality control, data flows within an ethical and legal data framework, training and certification, monitoring and feedback. Bridging the technical, operational, regulatory and economic gaps demands the joint actions from public and industry stakeholders across national and global boundaries.

3.
Nucl Med Commun ; 44(5): 351-357, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36826407

ABSTRACT

BACKGROUND: This work aimed to determine the implications of the variability in estimated glomerular filtration rate (eGFR) for the prediction of measured GFR (mGFR) for selection of sampling time-point in single-sample 99m Tc-diethylene-triamine-pentaacetate (DTPA) mGFR. METHODS: Patient studies were used to compare eGFR and mGFR ( n = 282). The eGFR was calculated using the Chronic Kidney Disease Epidemiology Collaboration 2009 equation, from serum creatinine values measured in the laboratory ( n = 27) or using a point-of-care testing device ( n = 255). The mGFR was taken as the true value, and the root mean square error (RMS err ) in eGFR was calculated. Receiver operator characteristic curves were generated comparing the sensitivity and specificity of eGFR for the prediction of mGFR within the British Nuclear Medicine Society (BNMS) 2018 guideline ranges. RESULTS: The overall eGFR RMS err was 19.3 mL/min/1.73 m 2 . Use of eGFR to predict mGFR in the ranges specified in the BNMS 2018 guidelines (25-50; 50-70; 70-100; and >100) achieved the following specificity and sensitivity for each individual range (97%, 71%; 92%, 47%; 81%, 48%; and 74%, 90%). For the middle ranges (50-70 and 70-100) the sensitivity is very low, less than 50%; more studies are classified incorrectly on the basis of eGFR in these ranges than correctly. CONCLUSION: This work shows that serum creatinine eGFR is not sufficiently accurate to predict the optimum single-sample time-point for 99m Tc-DTPA mGFR prior to measurement. It is the recommendation of this study that a single sampling time-point should be chosen for studies eGFR > 40 ml/min/1.73 m 2 as opposed to the use of eGFR to determine the sampling time-point.


Subject(s)
Renal Insufficiency, Chronic , Technetium Tc 99m Pentetate , Humans , Glomerular Filtration Rate , Creatinine , Renal Insufficiency, Chronic/diagnostic imaging , Sensitivity and Specificity
4.
EJNMMI Phys ; 10(1): 73, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37993667

ABSTRACT

INTRODUCTION: Commissioning, calibration, and quality control procedures for nuclear medicine imaging systems are typically performed using hollow containers filled with radionuclide solutions. This leads to multiple sources of uncertainty, many of which can be overcome by using traceable, sealed, long-lived surrogate sources containing a radionuclide of comparable energies and emission probabilities. This study presents the results of a quantitative SPECT/CT imaging comparison exercise performed within the MRTDosimetry consortium to assess the feasibility of using 133Ba as a surrogate for 131I imaging. MATERIALS AND METHODS: Two sets of four traceable 133Ba sources were produced at two National Metrology Institutes and encapsulated in 3D-printed cylinders (volume range 1.68-107.4 mL). Corresponding hollow cylinders to be filled with liquid 131I and a mounting baseplate for repeatable positioning within a Jaszczak phantom were also produced. A quantitative SPECT/CT imaging comparison exercise was conducted between seven members of the consortium (eight SPECT/CT systems from two major vendors) based on a standardised protocol. Each site had to perform three measurements with the two sets of 133Ba sources and liquid 131I. RESULTS: As anticipated, the 131I pseudo-image calibration factors (cps/MBq) were higher than those for 133Ba for all reconstructions and systems. A site-specific cross-calibration reduced the performance differences between both radionuclides with respect to a cross-calibration based on the ratio of emission probabilities from a median of 12-1.5%. The site-specific cross-calibration method also showed agreement between 133Ba and 131I for all cylinder volumes, which highlights the potential use of 133Ba sources to calculate recovery coefficients for partial volume correction. CONCLUSION: This comparison exercise demonstrated that traceable solid 133Ba sources can be used as surrogate for liquid 131I imaging. The use of solid surrogate sources could solve the radiation protection problem inherent in the preparation of phantoms with 131I liquid activity solutions as well as reduce the measurement uncertainties in the activity. This is particularly relevant for stability measurements, which have to be carried out at regular intervals.

SELECTION OF CITATIONS
SEARCH DETAIL