Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Opt Express ; 31(23): 38064-38076, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-38017923

ABSTRACT

A new rotational coherent anti-Stokes Raman spectroscopy (RCARS) concept based on interferometric quantum control (IQC) is demonstrated. Two wavepackets originating from pure rotational states are created by a femtosecond stimulated rotational Raman interaction. The two Raman responses are instantly probed by a single-mode ns pulse generating two interfering RCARS polarizations. The resulting signal is an IQC-RCARS spectrum detected by a streak camera. Here we demonstrate IQC-interferograms of N2 by varying the temporal separation between the two fs pulses within a full rotational revival period, as well as signal amplification and selective detection of nuclear-spin isomers at room conditions and inside a flame.

2.
Opt Express ; 31(8): 12932-12943, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37157442

ABSTRACT

A method based on femtosecond two-photon excitation has been developed for simultaneous visualization of interference-free fluorescence of H and O atoms in turbulent flames. This work shows pioneering results on single-shot simultaneous imaging of these radicals under non-stationary flame conditions. The fluorescence signal, showing the distribution of H and O radicals in premixed CH4/O2 flames was investigated for equivalence ratios ranging from ϕ = 0.8 to ϕ = 1.3. The images have been quantified through calibration measurements and indicate single-shot detection limits on the order of a few percent. Experimental profiles have also been compared with profiles from flame simulations, showing similar trends.

3.
Appl Opt ; 62(6): LAC1-LAC3, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36821332

ABSTRACT

The eighteenth topical meeting on Laser Applications to Chemical, Security, and Environmental Analysis (LACSEA) was held in Vancouver, Canada from 11-15 July 2022, as part of the Optica Optical Sensors and Sensing Congress in a hybrid format allowing on-site and online attendance. The meeting featured a broad range of distinguished papers focusing on recent advances in laser and optical spectroscopy. A total of 52 contributed and invited papers were presented during the meeting, including topics such as photo-acoustic spectroscopy, imaging, non-linear technologies, frequency combs, remote sensing, environmental monitoring, aerosols, combustion diagnostics, hypersonic flow diagnostics, nuclear diagnostics, fs/ps applications, and machine learning and computational sensing.

4.
Opt Express ; 30(18): 32204-32214, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36242287

ABSTRACT

We present a novel method, to our knowledge, to control the shape of the spectra using 2-beam hybrid femtosecond (fs)/nanosecond (ns) coherent anti-Stokes Raman scattering (RCARS). The method is demonstrated experimentally and theoretically by utilizing a species-selective excitation approach via a field-free molecular alignment as an illustrative example. Two non-resonant fs laser pulses with proper delay selectively create and then annihilate N2 resonances in a binary mixture with O2 molecules. The RCARS signal is simultaneously resolved in spectral and temporal domains within a single-shot acquisition. The method requires very low pulse energies for excitation, hence minimizing multiphoton ionization probability, allowing for coherent control at various temperatures and pressures, with spectroscopic applications in non-stationary and unpredictable reacting flows.

5.
Opt Lett ; 46(22): 5723-5726, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34780446

ABSTRACT

Periodic shadowing, a concept used in spectroscopy for stray light reduction, has been implemented to improve the temporal contrast of streak camera imaging. The capabilities of this technique are first proven by imaging elastically scattered picosecond laser pulses and are further applied to fluorescence lifetime imaging, where more accurate descriptions of fluorescence decay curves were observed. This all-optical approach can be adapted to various streak camera imaging systems, resulting in a robust technique to minimize space-charge induced temporal dispersion in streak cameras while maintaining temporal coverage and spatial information.

6.
Pediatr Res ; 89(4): 823-829, 2021 03.
Article in English | MEDLINE | ID: mdl-32534453

ABSTRACT

BACKGROUND: Using an optical method based on tunable diode laser absorption spectroscopy, we previously assessed oxygen (O2) and water vapor (H2O) content in a tissue phantom of the preterm infant lung. Here we applied this method on newborn piglets with induced lung complications. METHODS: Five mechanically ventilated piglets were subjected to stepwise increased and decreased fraction of inspired oxygen (FiO2), to atelectasis using a balloon catheter in the right bronchus, and to pneumothorax by injecting air in the pleural cavity. Two diode lasers (764 nm for O2 gas absorption and 820 nm for H2O absorption) were combined in a probe delivering light either externally, on the skin, or internally, through the esophagus. The detector probe was placed dermally. RESULTS: Calculated O2 concentrations increased from 20% (IQR 17-23%) when ventilated with room air to 97% (88-108%) at FiO2 1.0. H2O was only detectable with the internal light source. Specific light absorption and transmission patterns were identified in response to atelectasis and pneumothorax, respectively. CONCLUSIONS: The optical method detected FiO2 variations and discriminated the two induced lung pathologies, providing a rationale for further development into a minimally invasive device for real-time monitoring gas changes in the lungs of sick newborn infants. IMPACT: Optical spectroscopy can detect pulmonary complications in an animal model. Oxygen concentrations can be evaluated in the lungs. Presents a novel minimally invasive method to detect lung oxygenation and complications. Potential to be developed into a lung monitoring method in newborn infants. Potential for bed-side detection of pulmonary complications in newborn infants.


Subject(s)
Lasers , Oxygen/metabolism , Spectrum Analysis/methods , Animals , Animals, Newborn , Blood Gas Analysis , Esophagus , Fluoroscopy , Lung , Oxygen/chemistry , Phantoms, Imaging , Respiration, Artificial , Skin/pathology , Spectrophotometry , Swine , Water
7.
Appl Opt ; 60(15): LAC1-LAC3, 2021 May 20.
Article in English | MEDLINE | ID: mdl-34143144

ABSTRACT

This Applied Optics feature issue on laser applications to chemical, security, and environmental analysis (LACSEA) highlights papers presented at the LACSEA 2020 Seventeenth Topical Meeting sponsored by The Optical Society (OSA).

8.
Opt Express ; 27(7): 10304-10310, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-31045174

ABSTRACT

We present an efficient fiber source designed for continuous-wave differential absorption light detection and ranging (CW DIAL) of atmospheric CO2-concentration. It has a linewidth of 3 MHz, a tuning range of 2 nm over the CO2 absorption peaks at 1.572 µm, and an output power of 1.3 W limited by available pump power. Results from the initial CW DIAL testing are also presented and discussed.

9.
Opt Express ; 27(18): 25656-25669, 2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31510434

ABSTRACT

A model based on rate-equation analysis has been developed for simulation of two-photon-excited laser-induced fluorescence of carbon monoxide (CO) in the Hopfield-Birge band at 230 nm. The model has been compared with experimental fluorescence profiles measured along focused beams provided by lasers emitting nano-, pico-, and femtosecond pulses. Good quantitative agreement was obtained between simulations and experimental data obtained in premixed CH4/C2H4-air flames. For excitation with femtosecond pulses, experimental and simulated fluorescence signals showed quadratic dependence on laser power under conditions of low laser irradiance, whereas different sublinear dependencies were obtained at higher irradiances due to photoionization. Simulations of CO signal versus femtosecond laser linewidth suggest the strongest signal for a transform-limited pulse, which is sufficiently broad spectrally to cover the CO Q-branch absorption spectrum. Altogether, the developed rate-equation model allows for analysis of two-photon excitation fluorescence to arrange suitable diagnostic configurations and retrieve quantitative data for CO as well as other species in combustion, such as atomic oxygen and hydrogen.

10.
Opt Express ; 27(12): 17348-17358, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-31252945

ABSTRACT

A molecular laser-radar system, based on the Scheimpflug principle, has been constructed and demonstrated for remote sensing of atmospheric CO2 concentrations using Differential Absorption Lidar (DIAL) in the (30012←00001) absorption band. The laser source is a Continues Wave (CW) Distributed-FeedBack (DFB) diode laser seeding an Erbium-doped fiber amplifier, emitting narrowband (3 MHz) tunable radiation with an output power of 1.3 W at 1.57 µm. The laser beam is expanded and transmitted to the atmosphere. The atmospheric backscattered signal is collected with a Newtonian telescope and detected with a linear InGaAs array detector satisfying the Scheimpflug condition. We present range-resolved measurements of atmospheric CO2 concentration from a test range of 2 km located in the city of Lund, Sweden. We discuss and provide scalable results for CO2 profiling with the Scheimpflug-lidar method.

11.
Opt Lett ; 44(9): 2374-2377, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31042226

ABSTRACT

By aiming to establish single-ended standoff combustion diagnostics, bidirectional lasing emissions of atomic hydrogen at 656 nm wavelength have been generated via two-photon resonant excitation by focusing 205 nm femtosecond laser pulses into a premixed CH4/O2 flame. The forward lasing strength is approximately one order of magnitude stronger than that of the backward one, due to the geometry of traveling wave excitation over a 2-mm-long pencil-shaped gain volume and the short gain lifetime of 3.5 ps. The gain coefficient of hydrogen lasing was determined to approximate 52/cm. As for the underlying physics of hydrogen lasing, amplified spontaneous emission (ASE) occurs simultaneously with four-wave mixing (FWM), and ASE dominates in the forward direction, whereas the backward lasing is virtually only ASE.

12.
Opt Lett ; 44(22): 5477-5480, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31730087

ABSTRACT

In this Letter, we have investigated 845 nm lasing generation in atomic oxygen, present in a lean methane-air flame, using two-photon pumping with femtosecond 226 nm laser pulses, particularly focusing on the impact of nanosecond repetitively pulsed glow discharges forcing on the backward lasing signal. Characterizations of the backward lasing pulse, in terms of its spectrum, beam profile, pump pulse energy dependence, and divergence, were conducted to establish the presence of lasing. With plasma forcing of the flame, the backward lasing signal was observed to be enhanced significantly, ∼50%. The vertical concentration profile of atomic oxygen was revealed by measuring the backward lasing signal strength as a function of height in the flame. The results are qualitatively consistent with results obtained with two-dimensional femtosecond two-photon-absorption laser-induced fluorescence, suggesting that the backward lasing technique can be a useful tool for studies of plasma-assisted combustion processes, particularly in geometries requiring single-ended standoff detection.

13.
Opt Express ; 26(12): 14842-14858, 2018 Jun 11.
Article in English | MEDLINE | ID: mdl-30114790

ABSTRACT

A portable Lidar system developed for large-scale (~1-20 m) combustion diagnostics is described and demonstrated. The system is able to perform remote backscattering measurements with range and temporal resolution. The range resolution is obtained by sharply imaging a part of the laser beam onto a CMOS-array or ICCD detector. The large focal depth required to do this is attained by placing the laser beam, the collection optics and the detector in a so-called Scheimpflug configuration. Results from simulations of the range capabilities and range resolution of the system are presented and its temporal resolution is also discussed. Various applications, important for combustion diagnostics, are also demonstrated, including Rayleigh scattering thermometry, aerosol detection and laser-induced fluorescence measurements. These measurements have been carried out using various continuous-wave GaN diode lasers, emitting in the violet-blue (405 - 450 nm) wavelength regime. It is anticipated that Scheimpflug Lidar will provide a useful and versatile diagnostic tool for combustion research, not only for fundamental studies, but in particular for applications at industrial sites.

14.
Opt Lett ; 43(5): 1183-1186, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29489811

ABSTRACT

We report on an observation of bi-directional 656 nm lasing action of atomic hydrogen in a premixed CH4/air flame induced by resonant femtosecond 205 nm two-photon excitation. In particular, the backward-propagating lasing pulse is characterized in the spatial and temporal domains for the sake of a single-ended diagnostic. Its picosecond-scale duration and smooth temporal profile enable spatially resolved detection of hydrogen atoms in the millimeter range, which is successfully demonstrated using two narrow welding flames.

15.
Appl Opt ; 57(35): 10164-10171, 2018 Dec 10.
Article in English | MEDLINE | ID: mdl-30645222

ABSTRACT

A dual-band continuous-wave (CW) light detection and ranging (lidar) system has been developed for particle classification. In this lidar system, the range-resolved atmospheric backscattering signal is recorded by an optical imaging system satisfying the Scheimpflug principle instead of the conventional time-of-flight approach. It is thus possible to employ low-cost and compact CW diode lasers, facilitating the development of a robust multiple-wavelength atmospheric lidar system that can attain high accuracy of the retrieved parameters of atmospheric particles. The present work demonstrates a dual-band Scheimpflug lidar system employing two diode lasers at 405 nm (0.5 W) and 808 nm (3.2 W). Exposures are milliseconds apart and interpolated. Measurements of various types of particles and smoke have been performed to verify the feasibility of using the present system for improved particle classification and sizing, for the situation when plumes were dilute and no significant opacity was detected.

16.
Opt Lett ; 40(24): 5718-21, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26670495

ABSTRACT

We report an innovative approach for time-domain measurements of S-branch Raman linewidths using hybrid picosecond/nanosecond pure-rotational coherent anti-Stokes Raman spectroscopy (RCARS). The Raman coherences are created by two picosecond excitation pulses and are probed using a narrow-band nanosecond pulse at 532 nm. The generated RCARS signal contains the entire coherence decay in a single pulse. By extracting the decay times of the individual transitions, the J-dependent Raman linewidths can be calculated. Self-broadened S-branch linewidths for nitrogen and oxygen at 293 K and ambient pressure are in good agreement with previous time-domain measurements. Experimental considerations of the approach are discussed along with its merits and limitations. The approach can be extended to a wide range of pressures and temperatures and has potential for simultaneous single-shot thermometry and linewidth determination.

17.
Opt Lett ; 40(21): 5019-22, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26512508

ABSTRACT

A laser method to suppress background interferences in pump-probe measurements is presented and demonstrated. The method is based on structured illumination, where the intensity profile of the pump beam is spatially modulated to make its induced photofragment signal distinguishable from that created solely by the probe beam. A spatial lock-in algorithm is then applied on the acquired data, extracting only those image components that are characterized by the encoded structure. The concept is demonstrated for imaging of OH photofragments in a laminar methane/air flame, where the signal from the OH photofragments produced by the pump beam is spatially overlapping with that from the naturally present OH radicals. The purpose was to perform for the first time, to the best of our knowledge, single-shot imaging of HO(2) in a flame. These results show an increase in signal-to-interference ratio of about 20 for single-shot data.

18.
Appl Opt ; 54(33): 9772-8, 2015 Nov 20.
Article in English | MEDLINE | ID: mdl-26836536

ABSTRACT

A highly scattering porous ceramic sample is employed as a miniature random-scattering multipass gas cell for monitoring of oxygen content in opaque media, that is, wood materials in the present work. Gas in scattering media absorption spectroscopy is used by employing a 760 nm near-infrared laser diode to probe the absorption of molecular oxygen enclosed in the pores of the ceramic material working as the multipass gas cell, with a porosity of 75%. A path length enhancement of approximately 26 times and a signal-to-noise ratio of about 60 were obtained for the ceramic sample used in this work. The gas sensor was then used in a case study of the gas diffusion in wood materials, namely, oak, spruce, and mahogany samples. Differences depending on whether gas diffusion was studied longitudinal or radial to the tree annual rings are demonstrated, with very little gas diffusing in the radial direction. We can also observe that the gas diffusion for the densest material-oak-had the fastest diffusion time, and mahogany, which had the lowest density, showed the slowest diffusion time.

19.
Appl Opt ; 54(5): 1058-64, 2015 Feb 10.
Article in English | MEDLINE | ID: mdl-25968022

ABSTRACT

A laser diagnostic concept for measurement of potassium chloride (KCl) and potentially other alkali compounds in large-scale boilers and furnaces of limited optical access is presented. Single-ended, range-resolved, quantitative detection of KCl is achieved by differential absorption light detection and ranging (DIAL) based on picosecond laser pulses. Picosecond DIAL results have been compared experimentally with line-of-sight measurements using a commercial instrument, the in situ alkali chloride monitor (IACM), utilizing differential optical absorption spectroscopy. For centimeter-scale range resolution and a collection distance of 2.5 m, picosecond DIAL allowed for measurement of KCl concentrations around 130 ppm at 1200 K, in good agreement with values obtained by IACM. The DIAL data indicate a KCl detection limit of around 30 ppm for the present experimental conditions. In addition, a double-pulse DIAL setup has been developed and demonstrated for measurements under dynamic conditions with strong Mie scattering. The picosecond DIAL results are discussed and related to possible implementations of the method for measurements in industrial environments.

20.
Opt Express ; 22(7): 7711-21, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24718147

ABSTRACT

It is well known that spectroscopic measurements suffer from an interference known as stray light, causing spectral distortion that reduces measurement accuracy. In severe situations, stray light may even obscure the existence of spectral lines. Here a novel general method is presented, named Periodic Shadowing, that enables effective stray light elimination in spectroscopy and experimental results are provided to demonstrate its capabilities and versatility. Besides its efficiency, implementing it in a spectroscopic arrangement comes at virtually no added experimental complexity.

SELECTION OF CITATIONS
SEARCH DETAIL