Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Sensors (Basel) ; 24(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38931729

ABSTRACT

Chirality has a crucial effect on clinical, chemical and biological research since most bioactive compounds are chiral in the natural world. It is thus important to evaluate the enantiomeric ratio (or the enantiopurity) of the selected chiral analytes. To this purpose, fluorescence and electrochemical sensors, in which a chiral modifier is present, are reported in the literature. In this review, fluorescence and electrochemical sensors for enantiorecognition, in which chiral carbon dots (CDs) are used, are reported. Chiral CDs are a novel zero-dimensional carbon-based nanomaterial with a graphitic or amorphous carbon core and a chiral surface. They are nanoparticles with a high surface-to-volume ratio and good conductivity. Moreover, they have the advantages of good biocompatibility, multi-color emission, good conductivity and easy surface functionalization. Their exploitation in enantioselective sensing is the object of this review, in which several examples of fluorescent and electrochemical sensors, containing chiral CDs, are analyzed and discussed. A brief introduction to the most common synthetic procedures of chiral CDs is also reported, evidencing strengths and weaknesses. Finally, consideration concerning the potential challenges and future opportunities for the application of chiral CDs to the enantioselective sensing world are outlined.

2.
Sensors (Basel) ; 23(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37765788

ABSTRACT

A simple and selective method for the determination of caffeine (CAF) and theophylline (THEO) has been developed for a glassy carbon electrode (GCE) modified with a composite including carbon dots (CDs) and chitosan (CS). To our knowledge, there are no previous studies that analyze a CDs-modified GCE for the presence of CAF and THEO. The electrochemical behavior of a GCE modified with a CDs-CS composite was studied in acidic medium by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Considering the sensor analytical parameters, the same linear concentrations range was found for CAF and THEO ranging from 1 × 10-5 to 5 × 10-3 mol L-1 with the same detection limit (LOD) of 1 × 10-6 mol L-1. The reproducibility and repeatability data were satisfactory in terms of RSD%. Moreover, the storage stability was evaluated, evidencing good results whatever the experimental conditions used. The developed sensor was applied for the simultaneous determination of CAF and THEO in tea and drug, and results were compared with those obtained with HPLC-ESI-MS in SIR mode as an independent method optimized on purpose. The electrochemical sensor presents the undoubled advantages in terms of cheapness, portability, and ease of use, since it does not require skilled personnel.


Subject(s)
Caffeine , Chitosan , Theophylline , Reproducibility of Results , Carbon , Tea
3.
Molecules ; 28(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37570609

ABSTRACT

Vinca sardoa (Stearn) Pignatti, known as Sardinian periwinkle, is widely diffused in Sardinia (Italy). This species contains indole alkaloids, which are known to have a great variety of biological activities. This study investigated the antileukemic activity against a B lymphoblast cell line (SUP-B15) of V. sardoa alkaloid-rich extracts obtained from plants grown in Italy, in Iglesias (Sardinia) and Rome (Latium). All the extracts showed a good capacity to induce reductions in cell proliferation of up to 50% at the tested concentrations (1-15 µg/mL). Moreover, none of the extracts showed cytotoxicity on normal cells at all the studied concentrations.


Subject(s)
Alkaloids , Antineoplastic Agents , Vinca , Alkaloids/pharmacology , Indole Alkaloids/pharmacology , Antineoplastic Agents/pharmacology , Cell Proliferation , Plant Extracts/pharmacology
4.
Beilstein J Org Chem ; 19: 1966-1981, 2023.
Article in English | MEDLINE | ID: mdl-38169890

ABSTRACT

In order to replace the expensive metal/ligand catalysts and classic toxic and volatile solvents, commonly used for the hydration of alkynes, the hydration reaction of alkynes was studied in the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMIm-BF4) adding boron trifluoride diethyl etherate (BF3·Et2O) as catalyst. Different ionic liquids were used, varying the cation or the anion, in order to identify the best one, in terms of both efficiency and reduced costs. The developed method was efficaciously applied to different alkynes, achieving the desired hydration products with good yields. The results obtained using a conventional approach (i.e., adding BF3·Et2O) were compared with those achieved using BF3 electrogenerated in BMIm-BF4, demonstrating the possibility of obtaining the products of alkyne hydration with analogous or improved yields, using less hazardous precursors to generate the reactive species in situ. In particular, for terminal arylalkynes, the electrochemical route proved to be advantageous, yielding preferentially the hydration products vs the aldol condensation products. Importantly, the ability to recycle the ionic liquid in subsequent reactions was successfully demonstrated.

5.
Rapid Commun Mass Spectrom ; 36(17): e9338, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35729083

ABSTRACT

RATIONALE: The occurrence of N-heterocyclic carbenes in imidazolium-based ionic liquids has long been discussed, but no spectroscopic evidence has been reported yet due to their transient nature. The insertion of an ionizable acid group into the cation scaffold of an ionic liquid which acts as a charge tag allows for the direct detection of free carbenes by mass spectrometry. METHODS: Three different Brønsted acidic ionic liquids were synthesized: 1-methyl-3-carboxymethylimidazolium chloride (MAICl), 1-methyl-3-carboxymethylimidazolium acetate (MAIAc) and the corresponding 2-(3-methyl-1H-imidazol-3-ium-1-yl)acetate zwitterion (MAI - H). The speciation of these compounds was then analysed by electrospray ionization ion-trap mass spectrometry in the negative ion mode. RESULTS: The C2-H deprotonation of the imidazolium cation leading to the formation of the corresponding carbene is highly affected by the basic properties of the counter-anion. In the case of MAICl and MAI - H ionic liquids, no charged species corresponding to the free N-heterocyclic carbene was detected. On the contrary, in the presence of a sufficiently basic anion, such as acetate of MAIAc ionic liquid, an intense signal related to the free carbenic species was observed without the addition of an external base. CONCLUSIONS: In situ formation of free N-heterocyclic carbenes from Brønsted acidic ionic liquids was demonstrated, highlighting the crucial role of anion basicity in promoting the C2-H proton abstraction from imidazolium cations with a carboxylic side chain.

6.
Molecules ; 27(15)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35956912

ABSTRACT

Agropyron repens (L.) P. Beauv. (couch grass) is a world-wide infesting rhizomatous plant with pharmacological applications. Chemical research is focused on its allelopathic and anti-inflammatory components, which are mainly present in the essential oil. Conversely, the aqueous extracts have been sparingly investigated, although the herbal tea is by far the most used formulation. To fill the gap, the metabolic profile of Agropyron repens rhizome herbal tea was investigated by electrospray ionization (ESI) tandem-mass spectrometry (MS/MS); the phenolic profile was investigated by HPLC-PDA-ESI-MS/MS. ESI-MS fingerprinting was provided, evidencing diagnostic ions for saccharides, organic acids and amino acids. The HPLC-PDA-ESI-MS/MS analysis evidenced at least 20 characteristic phenolic compounds, the most representative being caffeoyl and feruloyl quinic esters, followed by coumaric, caffeic and ferulic acids, and hesperidin among flavonoids. In addition, the essential amino acid tryptophan was identified for the first time. The results suggest new perspectives of applications for Agropyron repens rhizome.


Subject(s)
Agropyron , Teas, Herbal , Chromatography, High Pressure Liquid/methods , Flavonoids/chemistry , Metabolome , Phenols/analysis , Plant Extracts/chemistry , Rhizome/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Teas, Herbal/analysis
7.
Molecules ; 27(16)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36014401

ABSTRACT

Chirality is undoubtedly a fundamental property of nature since the different interactions of optically active molecules in a chiral environment are essential for numerous applications. Thus, in the field of asymmetric synthesis, the search for efficient, sustainable, cost-effective and recyclable chiral catalysts is still the main challenge in organic chemistry. The field of carbon dots (CDs) has experienced tremendous development in the last 15 years, including their applications as achiral catalysts. Thus, understanding the implications of chirality in CDs chemistry could be of utmost importance to achieving sustainable and biocompatible chiral nanocatalysts. An efficient and cost-effective electrochemical synthetic methodology for the synthesis of L-Proline-based chiral carbon dots (CCDs) and EtOH-derived L-Proline-based chiral carbon dots (CCDs) is herein reported. The electrochemical set-up and reaction conditions have been thoroughly optimised and their effects on CCDs size, photoluminescence, as well as catalytic activity have been investigated. The obtained CCDs have been successfully employed to catalyze an asymmetric aldol reaction, showing excellent results in terms of yield, diastereo- and enantioselectivity. Moreover, the sustainable nature of the CCDs was demonstrated by recycling the catalysts for up to 3 cycles without any loss of reactivity or stereoselectivity.


Subject(s)
Carbon , Proline , Aldehydes/chemistry , Catalysis , Proline/chemistry
8.
J Food Sci Technol ; 59(11): 4553-4562, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35789584

ABSTRACT

The well-known health beneficial properties of beer are mainly due to phenolic antioxidants. Citrus-flavored beers represent a growing side-market in the beer industry, sparingly investigated to date. The phenolic profile of commercial radler beers (R1, R2) was investigated to evaluate the impact of the lemon juice added to beer in the industrial production. Results were compared to those obtained for opportunely chosen commercial beer (B) and lemonade (L). The study was carried out by an HPLC-MS/MS with an electrospray ionization source in selected ion recording mode, analyzing in a single chromatographic run 26 compounds belonging to the different phenolic classes of hydroxybenzoic, hydroxycinnamic and caffeoylquinic acids, flavonoids and prenylflavonoids. Different phenolic profiles were found for R1 and R2, mainly ascribed to different malt/hop/recipe used for the beer. High to very high level of hesperidin were found in the radlers, so that a major impact on phenolic antioxidants of the radlers was due to the lemon. Similarly, a major impact of the lemon aromas was found, D-limonene being the dominant peak resulting from the GC-MS analysis of the volatile fraction of the radlers.

9.
Chem Rec ; 21(9): 2130-2147, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33507627

ABSTRACT

In the last twenty years, N-heterocyclic carbenes (NHCs) have been extensively studied for their application as organocatalysts in stereoselective synthesis as well as ligands for transition metals-promoted synthetic methodologies. Derived mainly from azolium salts, NHCs have demonstrated exceptional versatility in their generation usually performed by deprotonation or reduction (chemical or electrochemical). In particular, the generation of NHC under electrochemical conditions, starting from azolium-based ionic liquids, has proven to be a successful green approach and demonstrated wide applicability in organic synthesis. In this Personal Account, the application of electrogenerated NHCs in organic synthesis will be discussed, with a particular attention to the different reactivity in ionic liquids compared to classical organic solvents.

10.
J Org Chem ; 86(22): 16151-16157, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34213898

ABSTRACT

The anodic oxidation of 1-butyl-3-methylimidazolium tetrafluoroborate (BMIm-BF4) efficiently generates BF3 from BF4-. This Lewis acid, strongly bound to the ionic liquids, can be efficiently used in classical BF3-catalyzed reactions. We demonstrated the BF3/BMIm-BF4 reactivity in four reactions, namely, a domino Friedel-Crafts/lactonization of phenols, the Povarov reaction, the Friedel-Crafts benzylation of anisole, and the multicomponent synthesis of tetrahydro-11H-benzo[a]xanthen-11-ones. In comparison with literature data using BF3-Et2O in organic solvents, in all the presented cases, analogous or improved results were obtained. Moreover, the noteworthy advantages of the developed method are the in situ generation of BF3 (no storing necessity) in the required amount, using only the electron as redox reagent, and the recycling of BMIm-BF4 for multiple subsequent runs.


Subject(s)
Ionic Liquids , Oxidation-Reduction , Solvents
11.
Bioorg Med Chem Lett ; 42: 128087, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33964446

ABSTRACT

Candida albicans, in specific conditions, is responsible of severe invasive systemic candidiasis that are related to its ability to produce biofilm on biological and artificial surfaces. Many studies reported the role of iron in fungal growth and virulence and the ability of metal chelating agents to interfere with C. albicans metabolism, virulence and biofilm formation. Here we report the activity of 3-hydroxy-1,2-dimethyl-4(1H)-pyridinone (deferiprone) derivatives against C. albicans planktonic cells and biofilm. Some of the studied compounds (2b and 3b) were able to chelate Fe(III) and Cu(II), and showed an interesting activity on planktonic cells (MIC50 of 32 µg/mL and 16 µg/mL respectively) and on biofilm formation (BMIC50 of 32 µg/mL and 16 µg/mL respectively) in cultured ATCC 10,231C. albicans; this activity was reduced, in a concentration dependent way, by the addition of Fe(III) and Cu(II) to the culture media. Furthermore, the most active compound 3b showed a low toxicity on Galleria mellonella larvae.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/drug effects , Chelating Agents/pharmacology , Copper/pharmacology , Deferiprone/pharmacology , Iron/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Chelating Agents/chemical synthesis , Chelating Agents/chemistry , Copper/chemistry , Deferiprone/chemistry , Dose-Response Relationship, Drug , Drug Design , Iron/chemistry , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
12.
Int J Mol Sci ; 22(19)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34638558

ABSTRACT

The ability to obtain Fe is critical for pathogens to multiply in their host. For this reason, there is significant interest in the identification of compounds that might interfere with Fe management in bacteria. Here we have tested the response of two Gram-negative pathogens, Salmonella enterica serovar Typhimurium (STM) and Pseudomonas aeruginosa (PAO1), to deferiprone (DFP), a chelating agent already in use for the treatment of thalassemia, and to some DFP derivatives designed to increase its lipophilicity. Our results indicate that DFP effectively inhibits the growth of PAO1, but not STM. Similarly, Fe-dependent genes of the two microorganisms respond differently to this agent. DFP is, however, capable of inhibiting an STM strain unable to synthesize enterochelin, while its effect on PAO1 is not related to the capability to produce siderophores. Using a fluorescent derivative of DFP we have shown that this chelator can penetrate very quickly into PAO1, but not into STM, suggesting that a selective receptor exists in Pseudomonas. Some of the tested derivatives have shown a greater ability to interfere with Fe homeostasis in STM compared to DFP, whereas most, although not all, were less active than DFP against PAO1, possibly due to interference of the added chemical tails with the receptor-mediated recognition process. The results reported in this work indicate that DFP can have different effects on distinct microorganisms, but that it is possible to obtain derivatives with a broader antimicrobial action.


Subject(s)
Anti-Infective Agents/pharmacology , Deferiprone/analogs & derivatives , Deferiprone/pharmacology , Iron Chelating Agents/pharmacology , Pseudomonas aeruginosa/drug effects , Salmonella typhimurium/drug effects , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation/drug effects , Iron-Binding Proteins/genetics , Iron-Binding Proteins/metabolism , Sigma Factor/genetics , Sigma Factor/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
13.
J Enzyme Inhib Med Chem ; 32(1): 798-804, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28569564

ABSTRACT

We discovered novel and selective sulfonamides/amides acting as inhibitors of the α-carbonic anhydrase (CA, EC 4.2.1.1) from the pathogenic bacterium Vibrio cholerae (VchCA). This Gram-negative bacterium is the causative agent of cholera and colonises the upper small intestine where sodium bicarbonate is present at a high concentration. The secondary sulfonamides and amides investigated here were potent, low nanomolar VchCA inhibitors whereas their inhibition of the human cytosolic isoforms CA I and II was in the micromolar range or higher. The molecules represent an interesting lead for antibacterial agents with a possibly new mechanism of action, although their CA inhibition mechanism is unknown for the moment.


Subject(s)
Carbonic Anhydrase II/antagonists & inhibitors , Carbonic Anhydrase I/antagonists & inhibitors , Carbonic Anhydrase Inhibitors/pharmacology , Vibrio cholerae/enzymology , Amides/chemistry , Amides/pharmacology , Carbonic Anhydrase I/metabolism , Carbonic Anhydrase II/metabolism , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , Molecular Structure , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/pharmacology
14.
Foods ; 13(17)2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39272495

ABSTRACT

The interest in the quality control of the raw materials, intermediates, and final products, as well as production methods, of beer has increased significantly in recent decades due to the needs and expectations of consumers. Increasing in the industrialization and globalization of beer supply chains led to a need for novel analytical tools suitable for the rapid and reliable characterization of the materials involved. In this study, an ultracompact instrument operating in the NIR region of the spectrum, microNIR, was tested for the chemical investigation of barley malts. The essential raw materials for brewing require careful control since they deeply affect the characteristic flavor and taste of the final products. Therefore, a robust prediction model able to classify base and specialty barley malts was developed starting from NIR measurements. Soft Independent Class Analogy (SIMCA) was selected as the chemometric technique for the optimization of two prediction models, and ground and sieved materials were investigated using spectroscopy. The microNIR/chemometric approach proposed in this study permitted the correct prediction of the malt samples included in the external validation set, providing false positive and false negative rates no higher than 3.41% and 0.25%, respectively, and confirming the feasibility of the novel analytical platform.

15.
ChemElectroChem ; 10(3): e202201104, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-37502311

ABSTRACT

Carbon quantum dots (CDs) are "small" carbon nanostructures with excellent photoluminescence properties, together with low-toxicity, high biocompatibility, excellent dispersibility in water as well as organic solvents. Due to their characteristics, CDs have been studied for a plethora of applications as biosensors, luminescent probes for photodynamic and photothermal therapy, fluorescent inks and many more. Moreover, the possibility to obtain carbon dots from biomasses and/or organic waste has strongly promoted the interest in this class of carbon-based nanoparticles, having a promising impact in the view of circular economy and sustainable processes. Within this context, electrochemistry proved to be a green, practical, and efficient method for the synthesis of high-quality CDs, with the possibility to fine-tune their characteristics by changing operational parameters. This review outlines the principal and most recent advances in the electrochemical synthesis of CDs, focusing on the electrochemical set-up optimization.

16.
Front Biosci (Landmark Ed) ; 28(1): 3, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36722277

ABSTRACT

BACKGROUND: Brewer's spent grain (BSG) is one of the main by-products of beer industry, little used because of its high moisture making it difficult to transport and store. Mainly used as animal feed and for energy production, the agro-industrial waste have recently attracted attention as source of bioactive compounds, with potential applications in many sectors as food, nutraceutical, pharmaceutical, cosmetic, food packaging. The present work focuses on BSG as potential source of valuable small-size bioactive compounds. METHODS: Laboratory-made BSG was obtained by using four base malts for mashing. After drying, BSG was eco-friendly extracted with water and the extracts analyzed by untargeted ElectroSpray Ionization (ESI)-Mass Spectrometry (MS)/Mass Spectrometry (MS) (ESI-MS/MS) infusion experiments and by targeted High Performance Liquid Chromatography-PhotoDiodeArray-ElectroSpray Ionization-Mass Spectrometry (HPLC-PDA-ESI-MS) in Selected Ion Recording (SIR) mode analysis, to investigate the metabolic profile, the phenolic profile, the individual phenolic content, and tryptophan content. Aqueous extracts of malts and wort samples were also analyzed for a comparison. Data were statistically analyzed by ANOVA test. An explorative analysis based on Principal Component Analysis (PCA) was also carried out on malts, wort and threshes, in order to study correlation among samples and between samples and variables. RESULTS: The untargeted ESI-MS/MS infusion experiments provided the mass spectral fingerprint of BSG, evidencing amino acids (γ-aminobutyric acid, proline, valine, threonine, leucine/isoleucine, lysine, histidine, phenylalanine and arginine) and organic and inorganic acids (pyruvic, lactic, phosphoric, valerianic, malonic, 2-furoic, malic, citric and gluconic acids), besides sugars. γ-Aminobutyric acid and lactic acid resulted predominant among the others. The targeted HPLC-PDA-ESI-MS in SIR mode analysis provided the phenolic profile of the polar fraction of BSG, evidenced tryptophan as the main residual metabolite in BSG (62.33-75.35 µg/g dry BSG), and catechin (1.13-4.24 µg/g dry BSG) as the representative phenolic antioxidant of not pre-treated BSG samples. The chemometric analysis of the individual compounds content in BSG, malt and wort evidenced similarities and differences among the samples. CONCLUSIONS: As main goal, the phytochemical characterization of BSG from base malts highlighted BSG as a potential source of small biomolecules, as tryptophan and catechin, besides γ-aminobutyric acid and lactic acid, opening to new perspectives of application for BSG. Strategies for their recovery are a future challenge. Moreover, ESI-MS/MS analysis was confirmed as a powerful tool for fast characterization of complex matrix. Last, results obtained by chemometric elaboration of data demonstrated the possibility to monitor a small number of molecules to ensure the quality of a final product.


Subject(s)
Catechin , Tandem Mass Spectrometry , Animals , Tryptophan , Chromatography, Liquid , Spectrometry, Mass, Electrospray Ionization
17.
J Med Chem ; 66(24): 17059-17073, 2023 12 28.
Article in English | MEDLINE | ID: mdl-38085955

ABSTRACT

Developing drugs for brain infection by Naegleria fowleri is an unmet medical need. We used a combination of cheminformatics, target-, and phenotypic-based drug discovery methods to identify inhibitors that target an essential N. fowleri enzyme, sterol 14-demethylase (NfCYP51). A total of 124 compounds preselected in silico were tested against N. fowleri. Nine primary hits with EC50 ≤ 10 µM were phenotypically identified. Cocrystallization with NfCYP51 focused attention on one primary hit, miconazole-like compound 2a. The S-enantiomer of 2a produced a 1.74 Å cocrystal structure. A set of analogues was then synthesized and evaluated to confirm the superiority of the S-configuration over the R-configuration and the advantage of an ether linkage over an ester linkage. The two compounds, S-8b and S-9b, had an improved EC50 and KD compared to 2a. Importantly, both were readily taken up into the brain. The brain-to-plasma distribution coefficient of S-9b was 1.02 ± 0.12, suggesting further evaluation as a lead for primary amoebic meningoencephalitis.


Subject(s)
Miconazole , Naegleria fowleri , 14-alpha Demethylase Inhibitors/pharmacology , Drug Discovery
18.
Nanomaterials (Basel) ; 12(6)2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35335772

ABSTRACT

Antioxidants play a central role in the development and production of food, cosmetics, and pharmaceuticals, to reduce oxidative processes in the human body. Among them, phenolic antioxidants are considered even more efficient than other antioxidants. They are divided into natural and synthetic. The natural antioxidants are generally found in plants and their synthetic counterparts are generally added as preventing agents of lipid oxidation during the processing and storage of fats, oils, and lipid-containing foods: All of them can exhibit different effects on human health, which are not always beneficial. Because of their relevant bioactivity and importance in several sectors, such as agro-food, pharmaceutical, and cosmetic, it is crucial to have fast and reliable analysis Rmethods available. In this review, different examples of gold nanomaterial-based electrochemical (bio)sensors used for the rapid and selective detection of phenolic compounds are analyzed and discussed, evidencing the important role of gold nanomaterials, and including systems with or without specific recognition elements, such as biomolecules, enzymes, etc. Moreover, a selection of gold nanomaterials involved in the designing of this kind of (bio)sensor is reported and critically analyzed. Finally, advantages, limitations, and potentialities for practical applications of gold nanomaterial-based electrochemical (bio)sensors for detecting phenolic antioxidants are discussed.

19.
Materials (Basel) ; 15(3)2022 Jan 23.
Article in English | MEDLINE | ID: mdl-35160810

ABSTRACT

Imidazolium-based dicationic ionic liquids (DILs) are gaining considerable space in the field of organocatalysis mainly due to the opportunities in offering new possible applicable structural variations. In addition to the well-known variables which made the ionic liquids (ILs) famous as the type of cation and anion used, the nature of the molecular spacer moiety turns out a further possibility to improve some physicochemical properties, for example, solubility, acidity, electrochemical behavior, and so on. For this reason, this class of ionic liquids has been considered as possible competitors to their corresponding monocationic salts in replacing common catalysts in organic synthesis, particularly in cases in which their bidentate nature could positively affect the catalytic activity. This mini-review is intended to highlight the progress carried out in the last six years in the field of organocatalysis, including DILs as such and as hybrids with polymers, nanomaterials, and composites.

20.
Pharmaceutics ; 14(3)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35335969

ABSTRACT

Fungal diseases affect more than 1 billion people worldwide. The constant global changes, the advent of new pandemics, and chronic diseases favor the diffusion of fungal pathogens such as Candida, Cryptococcus, Aspergillus, Trichophyton, Histoplasma capsulatum, and Paracoccidioides brasiliensis. In this work, a series of nitrofuran derivatives were synthesized and tested against different fungal species; most of them showed inhibitory activity, fungicide, and fungistatic profile. The minimal inhibitory concentration (MIC90) values for the most potent compounds range from 0.48 µg/mL against H. capsulatum (compound 11) and P. brasiliensis (compounds 3 and 9) to 0.98 µg/mL against Trichophyton rubrum and T. mentagrophytes (compounds 8, 9, 12, 13 and 8, 12, 13, respectively), and 3.9 µg/mL against Candida and Cryptococcus neoformans strains (compounds 1 and 5, respectively). In addition, all compounds showed low toxicity when tested in vitro on lung cell lines (A549 and MRC-5) and in vivo in Caenorhabditis elegans larvae. Many of them showed high selectivity index values. Thus, these studied nitrofuran derivatives proved to be potent against different fungal species, characterized by low toxicity and high selectivity; for these reasons, they may become promising compounds for the treatment of mycoses.

SELECTION OF CITATIONS
SEARCH DETAIL