Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.250
Filter
Add more filters

Publication year range
1.
Cell ; 185(21): 3877-3895.e21, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36152627

ABSTRACT

Williams-Beuren syndrome (WBS) is a rare disorder caused by hemizygous microdeletion of ∼27 contiguous genes. Despite neurodevelopmental and cognitive deficits, individuals with WBS have spared or enhanced musical and auditory abilities, potentially offering an insight into the genetic basis of auditory perception. Here, we report that the mouse models of WBS have innately enhanced frequency-discrimination acuity and improved frequency coding in the auditory cortex (ACx). Chemogenetic rescue showed frequency-discrimination hyperacuity is caused by hyperexcitable interneurons in the ACx. Haploinsufficiency of one WBS gene, Gtf2ird1, replicated WBS phenotypes by downregulating the neuropeptide receptor VIPR1. VIPR1 is reduced in the ACx of individuals with WBS and in the cerebral organoids derived from human induced pluripotent stem cells with the WBS microdeletion. Vipr1 deletion or overexpression in ACx interneurons mimicked or reversed, respectively, the cellular and behavioral phenotypes of WBS mice. Thus, the Gtf2ird1-Vipr1 mechanism in ACx interneurons may underlie the superior auditory acuity in WBS.


Subject(s)
Auditory Cortex/physiology , Williams Syndrome/physiopathology , Animals , Auditory Cortex/cytology , Disease Models, Animal , Humans , Induced Pluripotent Stem Cells , Interneurons/cytology , Interneurons/physiology , Mice , Phenotype , Trans-Activators/genetics , Williams Syndrome/genetics
2.
Cell ; 184(20): 5122-5137.e17, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34534446

ABSTRACT

Natural goal-directed behaviors often involve complex sequences of many stimulus-triggered components. Understanding how brain circuits organize such behaviors requires mapping the interactions between an animal, its environment, and its nervous system. Here, we use brain-wide neuronal imaging to study the full performance of mating by the C. elegans male. We show that as mating unfolds in a sequence of component behaviors, the brain operates similarly between instances of each component but distinctly between different components. When the full sensory and behavioral context is taken into account, unique roles emerge for each neuron. Functional correlations between neurons are not fixed but change with behavioral dynamics. From individual neurons to circuits, our study shows how diverse brain-wide dynamics emerge from the integration of sensory perception and motor actions in their natural context.


Subject(s)
Brain/physiology , Caenorhabditis elegans/physiology , Sensation/physiology , Sexual Behavior, Animal/physiology , Animals , Brain Mapping , Copulation/physiology , Courtship , Databases as Topic , Feedback , Female , Male , Models, Biological , Movement , Neurons/physiology , Rest , Signal Processing, Computer-Assisted , Synapses/physiology , Vulva/physiology
3.
Cell ; 184(3): 759-774.e18, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33400916

ABSTRACT

To investigate circuit mechanisms underlying locomotor behavior, we used serial-section electron microscopy (EM) to acquire a synapse-resolution dataset containing the ventral nerve cord (VNC) of an adult female Drosophila melanogaster. To generate this dataset, we developed GridTape, a technology that combines automated serial-section collection with automated high-throughput transmission EM. Using this dataset, we studied neuronal networks that control leg and wing movements by reconstructing all 507 motor neurons that control the limbs. We show that a specific class of leg sensory neurons synapses directly onto motor neurons with the largest-caliber axons on both sides of the body, representing a unique pathway for fast limb control. We provide open access to the dataset and reconstructions registered to a standard atlas to permit matching of cells between EM and light microscopy data. We also provide GridTape instrumentation designs and software to make large-scale EM more accessible and affordable to the scientific community.


Subject(s)
Aging/physiology , Drosophila melanogaster/ultrastructure , Microscopy, Electron, Transmission , Motor Neurons/ultrastructure , Sensory Receptor Cells/ultrastructure , Animals , Automation , Connectome , Extremities/innervation , Peripheral Nerves/ultrastructure , Synapses/ultrastructure
4.
Cell ; 178(3): 536-551.e14, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31257024

ABSTRACT

The expression of some proteins in the autophagy pathway declines with age, which may impact neurodegeneration in diseases, including Alzheimer's Disease. We have identified a novel non-canonical function of several autophagy proteins in the conjugation of LC3 to Rab5+, clathrin+ endosomes containing ß-amyloid in a process of LC3-associated endocytosis (LANDO). We found that LANDO in microglia is a critical regulator of immune-mediated aggregate removal and microglial activation in a murine model of AD. Mice lacking LANDO but not canonical autophagy in the myeloid compartment or specifically in microglia have a robust increase in pro-inflammatory cytokine production in the hippocampus and increased levels of neurotoxic ß-amyloid. This inflammation and ß-amyloid deposition were associated with reactive microgliosis and tau hyperphosphorylation. LANDO-deficient AD mice displayed accelerated neurodegeneration, impaired neuronal signaling, and memory deficits. Our data support a protective role for LANDO in microglia in neurodegenerative pathologies resulting from ß-amyloid deposition.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Endocytosis , Microtubule-Associated Proteins/metabolism , Alzheimer Disease/metabolism , Animals , Autophagy-Related Protein 5/deficiency , Autophagy-Related Protein 5/genetics , Autophagy-Related Proteins/deficiency , Autophagy-Related Proteins/genetics , CD36 Antigens/metabolism , Cytokines/metabolism , Disease Models, Animal , Hippocampus/metabolism , Intracellular Signaling Peptides and Proteins/deficiency , Intracellular Signaling Peptides and Proteins/genetics , Membrane Glycoproteins/metabolism , Mice , Mice, Transgenic , Microglia/cytology , Microglia/metabolism , RAW 264.7 Cells , Receptors, Immunologic/metabolism , Toll-Like Receptor 4/metabolism
6.
Nature ; 627(8003): 367-373, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38383788

ABSTRACT

The posterior parietal cortex exhibits choice-selective activity during perceptual decision-making tasks1-10. However, it is not known how this selective activity arises from the underlying synaptic connectivity. Here we combined virtual-reality behaviour, two-photon calcium imaging, high-throughput electron microscopy and circuit modelling to analyse how synaptic connectivity between neurons in the posterior parietal cortex relates to their selective activity. We found that excitatory pyramidal neurons preferentially target inhibitory interneurons with the same selectivity. In turn, inhibitory interneurons preferentially target pyramidal neurons with opposite selectivity, forming an opponent inhibition motif. This motif was present even between neurons with activity peaks in different task epochs. We developed neural-circuit models of the computations performed by these motifs, and found that opponent inhibition between neural populations with opposite selectivity amplifies selective inputs, thereby improving the encoding of trial-type information. The models also predict that opponent inhibition between neurons with activity peaks in different task epochs contributes to creating choice-specific sequential activity. These results provide evidence for how synaptic connectivity in cortical circuits supports a learned decision-making task.


Subject(s)
Decision Making , Neural Pathways , Parietal Lobe , Synapses , Calcium/analysis , Calcium/metabolism , Decision Making/physiology , Interneurons/metabolism , Interneurons/ultrastructure , Learning/physiology , Microscopy, Electron , Neural Inhibition , Neural Pathways/physiology , Neural Pathways/ultrastructure , Parietal Lobe/cytology , Parietal Lobe/physiology , Parietal Lobe/ultrastructure , Pyramidal Cells/metabolism , Pyramidal Cells/ultrastructure , Synapses/metabolism , Synapses/ultrastructure , Virtual Reality , Models, Neurological
7.
Nat Rev Neurosci ; 25(10): 649-667, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39164450

ABSTRACT

Mammalian neurons lose the ability to regenerate their central nervous system axons as they mature during embryonic or early postnatal development. Neuronal maturation requires a transformation from a situation in which neuronal components grow and assemble to one in which these components are fixed and involved in the machinery for effective information transmission and computation. To regenerate after injury, neurons need to overcome this fixed state to reactivate their growth programme. A variety of intracellular processes involved in initiating or sustaining neuronal maturation, including the regulation of gene expression, cytoskeletal restructuring and shifts in intracellular trafficking, have been shown to prevent axon regeneration. Understanding these processes will contribute to the identification of targets to promote repair after injury or disease.


Subject(s)
Axons , Nerve Regeneration , Neurogenesis , Animals , Nerve Regeneration/physiology , Axons/physiology , Humans , Neurogenesis/physiology , Neurons/physiology
8.
Nature ; 618(7967): 992-999, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37316666

ABSTRACT

In the ongoing debates about eukaryogenesis-the series of evolutionary events leading to the emergence of the eukaryotic cell from prokaryotic ancestors-members of the Asgard archaea play a key part as the closest archaeal relatives of eukaryotes1. However, the nature and phylogenetic identity of the last common ancestor of Asgard archaea and eukaryotes remain unresolved2-4. Here we analyse distinct phylogenetic marker datasets of an expanded genomic sampling of Asgard archaea and evaluate competing evolutionary scenarios using state-of-the-art phylogenomic approaches. We find that eukaryotes are placed, with high confidence, as a well-nested clade within Asgard archaea and as a sister lineage to Hodarchaeales, a newly proposed order within Heimdallarchaeia. Using sophisticated gene tree and species tree reconciliation approaches, we show that analogous to the evolution of eukaryotic genomes, genome evolution in Asgard archaea involved significantly more gene duplication and fewer gene loss events compared with other archaea. Finally, we infer that the last common ancestor of Asgard archaea was probably a thermophilic chemolithotroph and that the lineage from which eukaryotes evolved adapted to mesophilic conditions and acquired the genetic potential to support a heterotrophic lifestyle. Our work provides key insights into the prokaryote-to-eukaryote transition and a platform for better understanding the emergence of cellular complexity in eukaryotic cells.


Subject(s)
Archaea , Eukaryota , Phylogeny , Archaea/classification , Archaea/cytology , Archaea/genetics , Eukaryota/classification , Eukaryota/cytology , Eukaryota/genetics , Eukaryotic Cells/classification , Eukaryotic Cells/cytology , Prokaryotic Cells/classification , Prokaryotic Cells/cytology , Datasets as Topic , Gene Duplication , Evolution, Molecular
9.
Blood ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133931

ABSTRACT

Fluorescence in situ hybridization (FISH) using break-apart probes is recommended for identifying high-grade B-cell lymphoma with MYC and BCL2 rearrangements (HGBCL-DH-BCL2). Unbalanced MYC break-apart patterns, where the red or green signal is lost, are commonly reported as an equivocal result by clinical laboratories. In a cohort of 297 HGBCL-DH-BCL2, 13% of tumors had unbalanced MYC break-apart patterns with loss of red (LR: 2%) or green (LG: 11%) signal. To determine the significance of these patterns, MYC rearrangements were characterized by sequencing in 130 HGBCL-DH-BCL2, including 3 LR and 14 LG tumors. A MYC rearrangement was identified for 71% of tumors with LR or LG patterns, with the majority involving immunoglobulin loci or other recurrent MYC rearrangement partners. The architecture of these rearrangements consistently preserved the rearranged MYC allele, with the MYC gene predicted to be on the derivative chromosome containing the signal that is still present in nearly all cases. MYC protein expression, MYC mRNA expression, and the proportion of tumors expressing the dark zone signature was not significantly different between balanced and unbalanced groups. These results support a recommendation that unbalanced MYC break-apart FISH patterns be reported as positive for MYC rearrangement in the context of diagnosing HGBCL-DH-BCL2.

10.
N Engl J Med ; 386(17): 1627-1637, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35476651

ABSTRACT

BACKGROUND: Neonatal endotracheal intubation often involves more than one attempt, and oxygen desaturation is common. It is unclear whether nasal high-flow therapy, which extends the time to desaturation during elective intubation in children and adults receiving general anesthesia, can improve the likelihood of successful neonatal intubation on the first attempt. METHODS: We performed a randomized, controlled trial to compare nasal high-flow therapy with standard care (no nasal high-flow therapy or supplemental oxygen) in neonates undergoing oral endotracheal intubation at two Australian tertiary neonatal intensive care units. Randomization of intubations to the high-flow group or the standard-care group was stratified according to trial center, the use of premedication for intubation (yes or no), and postmenstrual age of the infant (≤28 or >28 weeks). The primary outcome was successful intubation on the first attempt without physiological instability (defined as an absolute decrease in the peripheral oxygen saturation of >20% from the preintubation baseline level or bradycardia with a heart rate of <100 beats per minute) in the infant. RESULTS: The primary intention-to-treat analysis included the outcomes of 251 intubations in 202 infants; 124 intubations were assigned to the high-flow group and 127 to the standard-care group. The infants had a median postmenstrual age of 27.9 weeks and a median weight of 920 g at the time of intubation. A successful intubation on the first attempt without physiological instability was achieved in 62 of 124 intubations (50.0%) in the high-flow group and in 40 of 127 intubations (31.5%) in the standard-care group (adjusted risk difference, 17.6 percentage points; 95% confidence interval [CI], 6.0 to 29.2), for a number needed to treat of 6 (95% CI, 4 to 17) for 1 infant to benefit. Successful intubation on the first attempt regardless of physiological stability was accomplished in 68.5% of the intubations in the high-flow group and in 54.3% of the intubations in the standard-care group (adjusted risk difference, 15.8 percentage points; 95% CI, 4.3 to 27.3). CONCLUSIONS: Among infants undergoing endotracheal intubation at two Australian tertiary neonatal intensive care units, nasal high-flow therapy during the procedure improved the likelihood of successful intubation on the first attempt without physiological instability in the infant. (Funded by the National Health and Medical Research Council; Australian New Zealand Clinical Trials Registry number, ACTRN12618001498280.).


Subject(s)
Intubation, Intratracheal , Oxygen Inhalation Therapy , Australia , Elective Surgical Procedures , Humans , Infant, Newborn , Intensive Care Units, Neonatal , Intubation, Intratracheal/methods , Oxygen/analysis , Oxygen Inhalation Therapy/methods
11.
Ann Intern Med ; 177(2): 134-143, 2024 02.
Article in English | MEDLINE | ID: mdl-38285986

ABSTRACT

BACKGROUND: Outpatient management of select patients with low-risk acute pulmonary embolism (PE) has been proven to be safe and effective, yet recent evidence suggests that patients are still managed with hospitalization. Few studies have assessed contemporary real-world trends in discharge rates from U.S. emergency departments (EDs) for acute PE. OBJECTIVE: To evaluate whether the proportion of discharges from EDs for acute PE changed between 2012 and 2020 and which baseline characteristics are associated with ED discharge. DESIGN: Serial cross-sectional analysis. SETTING: U.S. EDs participating in the National Hospital Ambulatory Medical Care Survey. PATIENTS: Patients with ED visits for acute PE between 2012 and 2020. MEASUREMENTS: National trends in the proportion of discharges for acute PE and factors associated with ED discharge. RESULTS: Between 2012 and 2020, there were approximately 1 635 300 visits for acute PE. Overall, ED discharge rates remained constant over time, with rates of 38.2% (95% CI, 17.9% to 64.0%) between 2012 and 2014 and 33.4% (CI, 21.0% to 49.0%) between 2018 and 2020 (adjusted risk ratio, 1.01 per year [CI, 0.89 to 1.14]). No baseline characteristics, including established risk stratification scores, were predictive of an increased likelihood of ED discharge; however, patients at teaching hospitals and those with private insurance were more likely to receive oral anticoagulation at discharge. Only 35.9% (CI, 23.9% to 50.0%) of patients who were considered low-risk according to their Pulmonary Embolism Severity Index (PESI) class, 33.1% (CI, 21.6% to 47.0%) according to simplified PESI score, and 34.8% (CI, 23.3% to 48.0%) according to hemodynamic stability were discharged from the ED setting. LIMITATIONS: Cross-sectional survey design and inability to adjudicate diagnoses. CONCLUSION: In a representative nationwide sample, rates of discharge from the ED for acute PE appear to have remained constant between 2012 and 2020. Only one third of low-risk patients were discharged for outpatient management, and rates seem to have stabilized. Outpatient management of low-risk acute PE may still be largely underutilized in the United States. PRIMARY FUNDING SOURCE: None.


Subject(s)
Patient Discharge , Pulmonary Embolism , Humans , United States/epidemiology , Cross-Sectional Studies , Pulmonary Embolism/epidemiology , Pulmonary Embolism/therapy , Pulmonary Embolism/diagnosis , Emergency Service, Hospital , Risk Factors
12.
J Bacteriol ; 206(9): e0022824, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39158294

ABSTRACT

Until recently, microbiologists have relied on cultures to understand the microbial world. As a result, model organisms have been the focus of research into understanding Bacteria and Archaea at a molecular level. Diversity surveys and metagenomic sequencing have revealed that these model species are often present in low abundance in the environment; instead, there are microbial taxa that are cosmopolitan in nature. Due to the numerical dominance of these microorganisms and the size of their habitats, these lineages comprise mind-boggling population sizes upward of 1028 cells on the planet. Many of these dominant groups have cultured representatives and have been shown to be involved in mediating key processes in nature. Given their importance and the increasing need to understand changes due to climate change, we propose that members of Nitrosophaerota (Nitrosopumilus maritimus), SAR11 (Pelagibacter ubique), Hadesarchaeia, Bathyarchaeia, and others become models in the future. Abundance should not be the only measure of a good model system; there are other organisms that are well suited to advance our understanding of ecology and evolution. For example, the most well-studied symbiotic bacteria, like Buchnera, Aliivibrio, and Rhizobium, should be models for understanding host-associations. Also, there are organisms that hold new insights into major transitions in the evolution of life on the planet like the Asgard Archaea (Heimdallarchaeia). Innovations in a variety of in situ techniques have enabled us to circumvent culturing when studying everything from genetics to physiology. Our deepest understanding of microbiology and its impact on the planet will come from studying these microbes in nature. Laboratory-based studies must be grounded in nature, not the other way around.


Subject(s)
Archaea , Bacteria , Bacteria/genetics , Bacteria/classification , Archaea/genetics , Archaea/classification
13.
Article in English | MEDLINE | ID: mdl-39051934

ABSTRACT

The biological mediators which initiate lung injury in extremely preterm infants during early postnatal life remain largely unidentified, limiting opportunities for early treatment and diagnosis. This exploratory study used SWATH-mass spectrometry to identify bronchopulmonary dysplasia (BPD)-specific changes in protein abundance in plasma samples obtained in the first 72 hours of life from extremely preterm infants and bioinformatic analysis to identify BPD-related biological categories and pathways. Lasty, binary logistic regression analysis was used to test the BPD predictive potential of a base model alone (gestational age, birth weight, sex) and with the protein biomarker added, with bootstrap resampling used to internally validate protein predictors and adjust for overoptimism. We observed disturbance of key processes including coagulation, complement activation, development and extracellular matrix organisation in the first days of life in extremely preterm infants who were later diagnosed with BPD. In the BPD prediction analysis, 49 plasma proteins were identified which when each singularly was combined with birth characteristics had a C-index of 0.65-0.84 (optimism-adjusted C-index) suggesting predictive potential for BPD outcomes. Taken together, this study demonstrates that alterations in plasma proteins can be detected from 4 hours of age in extremely preterm infants who later develop BPD and that protein biomarkers when combined with three birth characteristics have the potential to predict BPD development within the first 72 hours of life.

14.
Plant Cell Physiol ; 65(2): 301-318, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38190549

ABSTRACT

Pectin methylesterases (PMEs) modify homogalacturonan's chemistry and play a key role in regulating primary cell wall mechanical properties. Here, we report on Arabidopsis AtPME2, which we found to be highly expressed during lateral root emergence and dark-grown hypocotyl elongation. We showed that dark-grown hypocotyl elongation was reduced in knock-out mutant lines as compared to the control. The latter was related to the decreased total PME activity as well as increased stiffness of the cell wall in the apical part of the hypocotyl. To relate phenotypic analyses to the biochemical specificity of the enzyme, we produced the mature active enzyme using heterologous expression in Pichia pastoris and characterized it through the use of a generic plant PME antiserum. AtPME2 is more active at neutral compared to acidic pH, on pectins with a degree of 55-70% methylesterification. We further showed that the mode of action of AtPME2 can vary according to pH, from high processivity (at pH8) to low processivity (at pH5), and relate these observations to the differences in electrostatic potential of the protein. Our study brings insights into how the pH-dependent regulation by PME activity could affect the pectin structure and associated cell wall mechanical properties.


Subject(s)
Arabidopsis , Carboxylic Ester Hydrolases , Hypocotyl , Hypocotyl/genetics , Hypocotyl/metabolism , Arabidopsis/metabolism , Cell Wall/metabolism , Mutation/genetics , Pectins/metabolism , Hydrogen-Ion Concentration
15.
J Neurooncol ; 167(2): 349-359, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38427131

ABSTRACT

PURPOSE: Multidisciplinary tumor boards (MTBs) integrate clinical, molecular, and radiological information and facilitate coordination of neuro-oncology care. During the COVID-19 pandemic, our MTB transitioned to a virtual and multi-institutional format. We hypothesized that this expansion would allow expert review of challenging neuro-oncology cases and contribute to the care of patients with limited access to specialized centers. METHODS: We retrospectively reviewed records from virtual MTBs held between 04/2020-03/2021. Data collected included measures of potential clinical impact, including referrals to observational or therapeutic studies, referrals for specialized neuropathology analysis, and whether molecular findings led to a change in diagnosis and/or guided management suggestions. RESULTS: During 25 meetings, 32 presenters discussed 44 cases. Approximately half (n = 20; 48%) involved a rare central nervous system (CNS) tumor. In 21% (n = 9) the diagnosis was changed or refined based on molecular profiling obtained at the NIH and in 36% (n = 15) molecular findings guided management. Clinical trial suggestions were offered to 31% (n = 13), enrollment in the observational NCI Natural History Study to 21% (n = 9), neuropathology review and molecular testing at the NIH to 17% (n = 7), and all received management suggestions. CONCLUSION: Virtual multi-institutional MTBs enable remote expert review of CNS tumors. We propose them as a strategy to facilitate expert opinions from specialized centers, especially for rare CNS tumors, helping mitigate geographic barriers to patient care and serving as a pre-screening tool for studies. Advanced molecular testing is key to obtaining a precise diagnosis, discovering potentially actionable targets, and guiding management.


Subject(s)
Central Nervous System Neoplasms , Pandemics , Humans , Retrospective Studies , Central Nervous System Neoplasms/diagnosis , Central Nervous System Neoplasms/therapy , Patient Care Team , Referral and Consultation
16.
Clin Transplant ; 38(1): e15235, 2024 01.
Article in English | MEDLINE | ID: mdl-38289893

ABSTRACT

INTRODUCTION: Tacrolimus forms the backbone of immunosuppression regimens in lung transplant recipients (LTRs). It is extensively metabolized by cytochrome P450 (CYP) 3A5 enzymes, of which polymorphisms can significantly affect tacrolimus dose requirements. It is unknown how coadministration of tacrolimus with voriconazole, a potent CYP3A5 inhibitor, affects rejection rates or empiric dose adjustments needed after voriconazole discontinuation. METHODS: This retrospective cohort study compares LTRs with poor (PR) versus intermediate/extensive (IE) CYP3A5 metabolizer phenotypes. The primary endpoint is cumulative immune outcomes within three months of voriconazole discontinuation; secondary endpoints include change in tacrolimus dose-to-concentration ratios after voriconazole discontinuation. RESULTS: Thirty-four patients underwent full analysis: 13 IE and 21 PR metabolizers. A higher proportion of IE metabolizers were African American (46.2% vs. 9.5%, p = .03). There was no significant difference in composite immune outcomes, though there was a proportionally higher frequency of new donor-specific antibody development in PR metabolizers (14.3% vs 7.7%, p = .56). Both groups required approximately 2.5 to 3-fold tacrolimus dose increases post-voriconazole discontinuation to re-attain therapeutic levels. CONCLUSION: This novel investigation sheds light on how CYP3A5 phenotype could be used to guide tacrolimus dosing, with the goal of preventing both toxicity and organ rejection.


Subject(s)
Immunosuppressive Agents , Tacrolimus , Humans , Voriconazole/therapeutic use , Antifungal Agents/therapeutic use , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Retrospective Studies , Transplant Recipients , Genotype , Phenotype , Lung
17.
Psychophysiology ; 61(7): e14554, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38561858

ABSTRACT

During times of stress, we look to close others for support. Social support conversations are critical for relationship maintenance and well-being. Yet, certain ways of talking about problems-such as co-ruminating-can exacerbate stress. Since social support and co-rumination are both dyadic processes, it is important to examine physiological responses during these conversations in a dyadic manner. Little research has examined physiological synchrony of the sympathetic nervous system (SNS) during social support conversations or co-ruminative conversations. The current research capitalizes on an experimental manipulation of co-rumination using a sample of close friends (147 dyads) and romantic partners (113 dyads) to examine physiological covariation in the context of support. Across both samples, dyads exhibited significant physiological covariation in pre-ejection period reactivity (PEP). Contrary to our hypothesis, dyads in the co-rumination condition did not show more covariation. Close friend dyads did, however, exhibit more covariation as compared to romantic dyads. We also found significant variability in physiological covariation across dyads, with a minority of dyads exhibiting negative covariation of PEP reactivity. The homogeneity of the samples limits the generalizability of the findings and highlights the need for more diverse samples in future work. These findings underline the need for further exploration into the mechanisms that contribute to distinct patterns of physiological synchrony, the conditions in which negative synchrony occurs, and what predicts especially strong positive synchrony. This work extends our understanding of physiological synchrony of the sympathetic nervous system during support conversations and emphasizes the importance of considering heterogeneity in physiological processes.


Subject(s)
Friends , Interpersonal Relations , Social Support , Sympathetic Nervous System , Humans , Male , Female , Adult , Young Adult , Sympathetic Nervous System/physiology , Sexual Partners/psychology , Heart Rate/physiology , Adolescent
18.
Psychophysiology ; : e14629, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886908

ABSTRACT

Social anxiety (SA) is characterized by anxious symptomology and fear during social situations, but recent work suggests that SA may not necessarily be associated with negative interpersonal and intrapersonal outcomes in support contexts. The current research investigates the discrepancies between self-perceptions, behavior, and physiological responses associated with SA in social support conversations with close friends. Specifically, we examined the associations between SA and positive and negative affect, perceptions of demands and resources, and responsiveness. Additionally, we used the biopsychosocial model of challenge and threat to understand the physiological responses associated with SA. Participants (79.9% White, 9.8% Black or African American, 10.3% Multiple races or other; 78.7% Female), totaling 172 undergraduate friend dyads, completed self-report measures and had physiological responses recorded while they discussed a problem unrelated to the friendship. Trained coders rated responsive behaviors exhibited during the conversation. Results revealed that greater SA was associated with greater negative perceptions of social interactions (greater negative affect, fewer perceived resources, and greater perceived demands). However, cardiovascular reactivity and behavioral responses within the conversation, as well as perceptions of partners' behavior after the conversation, contrasted with these negative perceptions. Indeed, greater SA was associated with greater sympathetic arousal (indicative of greater task engagement), but not with greater challenge or threat, and SA was not associated with perceived partner responsiveness or responsive behaviors. These results add to the growing body of research that suggests people with greater SA show inconsistencies between their conscious appraisals of social situations and their physiological responses.

19.
Vasc Med ; 29(1): 70-84, 2024 02.
Article in English | MEDLINE | ID: mdl-38166534

ABSTRACT

Lymphedema has traditionally been underappreciated by the healthcare community. Understanding of the underlying pathophysiology and treatments beyond compression have been limited until recently. Increased investigation has demonstrated the key role of inflammation and resultant fibrosis and adipose deposition leading to the clinical sequelae and associated reduction in quality of life with lymphedema. New imaging techniques including magnetic resonance imaging (MRI), indocyanine green lymphography, and high-frequency ultrasound offer improved resolution and understanding of lymphatic anatomy and flow. Nonsurgical therapy with compression, exercise, and weight loss remains the mainstay of therapy, but growing surgical options show promise. Physiologic procedures (lymphovenous anastomosis and vascularized lymph node transfers) improve lymphatic flow in the diseased limb and may reduce edema and the burden of compression. Debulking, primarily with liposuction to remove the adipose deposition that has accumulated, results in a dramatic decrease in limb girth in appropriately selected patients. Though early, there are also exciting developments of potential therapeutic targets tackling the underlying drivers of the disease. Multidisciplinary teams have developed to offer the full breadth of evaluation and current management, but the development of a greater understanding and availability of therapies is needed to ensure patients with lymphedema have greater opportunity for optimal care.


Subject(s)
Lymphatic Vessels , Lymphedema , Humans , Quality of Life , Lymphedema/diagnostic imaging , Lymphedema/etiology , Lymphography/methods , Vascular Surgical Procedures
20.
Mol Biol Rep ; 51(1): 483, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578540

ABSTRACT

BACKGROUND: The Northern bobwhite (Colinus virginianus) is an economically important, and popular game bird in North America. Northern bobwhites have experiencing declines of > 3.5% annually in recent decades due to several factors. The eyeworm Oxyspirura petrowi is a nematode parasite frequently found in the eyes of bobwhites. Although reported frequently in wild bobwhites, there is no research to understand the host-parasite mechanism. Hence, it is important to investigate mechanisms of eyeworm invasion and immune modulation in bobwhite. Cytokine gene expression using RT-PCR is widely used to identify the innate immune response of a host to an infection. METHODOLOGY: In this study, we evaluated ten reference genes (HMBS, RPL19, RPL32, RPS7, RPS8, TATA, SDHA, YWHAZ, GAPDH, and ACTB) for their stability across three tissues (liver, spleen, and caecal tonsils) of control and O. petrowi infected Northern bobwhites. Primer efficiency and reference genes stability were assessed using GeNorm, NormFinder, and BestKeeper. RESULTS: Expression of these reference genes with respect to O. petrowi infection in bobwhites showed RPL32 and HMBS were the most stable genes in the liver, HMBS and SDHA were the most stable genes in the spleen, and HMBS and YWHAZ were equally stable reference genes in the caecal tonsils. CONCLUSION: Based on the geometric mean of all three analyses, our results indicate that the combination of RPL32 and HMBS for the liver, HMBS and SDHA for the spleen, and YWHAZ and HMBS for caecal tonsils might be used as reference genes for normalization in gene expression investigations on Northern bobwhites.


Subject(s)
Bird Diseases , Colinus , Thelazioidea , Animals , Colinus/genetics , Bird Diseases/parasitology , Thelazioidea/genetics , Eye , Cytokines
SELECTION OF CITATIONS
SEARCH DETAIL