Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Chaos ; 33(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38149994

ABSTRACT

A cardiac arrhythmia is an abnormality in the rate or rhythm of the heart beat. We study a type of arrhythmia called a premature ventricular complex (PVC), which is typically benign, but in rare cases can lead to more serious arrhythmias or heart failure. There are three known mechanisms for PVCs: reentry, an ectopic focus, and triggered activity. We develop minimal models for each mechanism and attempt the inverse problem of determining which model (and therefore which mechanism) best describes the beat dynamics observed in an ambulatory electrocardiogram. We demonstrate our approach on a patient who exhibits frequent PVCs and find that their PVC dynamics are best described by a model of triggered activity. Better identification of the PVC mechanism from wearable device data could improve risk stratification for the development of more serious arrhythmias.


Subject(s)
Arrhythmias, Cardiac , Heart Failure , Humans , Heart Rate
2.
Basic Res Cardiol ; 117(1): 25, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35488105

ABSTRACT

Cardiac action potential (AP) shape and propagation are regulated by several key dynamic factors such as ion channel recovery and intracellular Ca2+ cycling. Experimental methods for manipulating AP electrical dynamics commonly use ion channel inhibitors that lack spatial and temporal specificity. In this work, we propose an approach based on optogenetics to manipulate cardiac electrical activity employing a light-modulated depolarizing current with intensities that are too low to elicit APs (sub-threshold illumination), but are sufficient to fine-tune AP electrical dynamics. We investigated the effects of sub-threshold illumination in isolated cardiomyocytes and whole hearts by using transgenic mice constitutively expressing a light-gated ion channel (channelrhodopsin-2, ChR2). We find that ChR2-mediated depolarizing current prolongs APs and reduces conduction velocity (CV) in a space-selective and reversible manner. Sub-threshold manipulation also affects the dynamics of cardiac electrical activity, increasing the magnitude of cardiac alternans. We used an optical system that uses real-time feedback control to generate re-entrant circuits with user-defined cycle lengths to explore the role of cardiac alternans in spontaneous termination of ventricular tachycardias (VTs). We demonstrate that VT stability significantly decreases during sub-threshold illumination primarily due to an increase in the amplitude of electrical oscillations, which implies that cardiac alternans may be beneficial in the context of self-termination of VT.


Subject(s)
Optogenetics , Tachycardia, Ventricular , Action Potentials/physiology , Animals , Lighting , Mice , Myocytes, Cardiac/physiology , Optogenetics/methods
3.
Chaos ; 30(11): 113127, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33261339

ABSTRACT

We have analyzed the electrocardiographic data collected during continuous 7-day ambulatory recordings in patients with frequent premature ventricular complexes (PVCs). We analyze the dependence of the frequency and patterns of PVCs on the heart rate and the time of the day. Patients display rhythms of a complex yet consistent structure. In a given patient, the pattern remains robust over different days and particular repetitive patterns appear at specific heart rates, suggesting the appearance of bifurcations in the dynamics. Over the course of 24 h, we find that in some patients, patterns appear to depend only on the heart rate, whereas in others, both the time of the day and the heart rate play a role in controlling the dynamics. Identifying parameter values at which bifurcations occur facilitates the development of dynamical models for arrhythmia. The use of powerful recording and analysis techniques will enable improved analysis of data and better understanding of mechanisms of arrhythmia in individual patients.


Subject(s)
Ventricular Premature Complexes , Electrocardiography , Heart Rate , Humans
4.
J Physiol ; 596(17): 3841-3858, 2018 09.
Article in English | MEDLINE | ID: mdl-29989169

ABSTRACT

KEY POINTS: Although optogenetics has clearly demonstrated the feasibility of cardiac manipulation, current optical stimulation strategies lack the capability to react acutely to ongoing cardiac wave dynamics. Here, we developed an all-optical platform to monitor and control electrical activity in real-time. The methodology was applied to restore normal electrical activity after atrioventricular block and to manipulate the intraventricular propagation of the electrical wavefront. The closed-loop approach was also applied to simulate a re-entrant circuit across the ventricle. The development of this innovative optical methodology provides the first proof-of-concept that a real-time all-optical stimulation can control cardiac rhythm in normal and abnormal conditions. ABSTRACT: Optogenetics has provided new insights in cardiovascular research, leading to new methods for cardiac pacing, resynchronization therapy and cardioversion. Although these interventions have clearly demonstrated the feasibility of cardiac manipulation, current optical stimulation strategies do not take into account cardiac wave dynamics in real time. Here, we developed an all-optical platform complemented by integrated, newly developed software to monitor and control electrical activity in intact mouse hearts. The system combined a wide-field mesoscope with a digital projector for optogenetic activation. Cardiac functionality could be manipulated either in free-run mode with submillisecond temporal resolution or in a closed-loop fashion: a tailored hardware and software platform allowed real-time intervention capable of reacting within 2 ms. The methodology was applied to restore normal electrical activity after atrioventricular block, by triggering the ventricle in response to optically mapped atrial activity with appropriate timing. Real-time intraventricular manipulation of the propagating electrical wavefront was also demonstrated, opening the prospect for real-time resynchronization therapy and cardiac defibrillation. Furthermore, the closed-loop approach was applied to simulate a re-entrant circuit across the ventricle demonstrating the capability of our system to manipulate heart conduction with high versatility even in arrhythmogenic conditions. The development of this innovative optical methodology provides the first proof-of-concept that a real-time optically based stimulation can control cardiac rhythm in normal and abnormal conditions, promising a new approach for the investigation of the (patho)physiology of the heart.


Subject(s)
Arrhythmias, Cardiac/therapy , Atrioventricular Block/therapy , Electric Stimulation Therapy/methods , Heart Atria/cytology , Heart Ventricles/cytology , Optogenetics/instrumentation , Action Potentials , Animals , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/physiopathology , Atrioventricular Block/genetics , Atrioventricular Block/physiopathology , Electrophysiologic Techniques, Cardiac , Heart Atria/physiopathology , Heart Atria/radiation effects , Heart Ventricles/physiopathology , Heart Ventricles/radiation effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Optical Imaging
5.
Am J Physiol Heart Circ Physiol ; 298(5): H1616-25, 2010 May.
Article in English | MEDLINE | ID: mdl-20228259

ABSTRACT

Sarcomere length (SL) is an important determinant and indicator of cardiac mechanical function; however, techniques for measuring SL in living, intact tissue are limited. Here, we present a technique that uses two-photon microscopy to directly image striations of living cells in cardioplegic conditions, both in situ (Langendorff-perfused rat hearts and ventricular tissue slices, stained with the fluorescent marker di-4-ANEPPS) and in vitro (acutely isolated rat ventricular myocytes). Software was developed to extract SL from two-photon fluorescence image sets while accounting for measurement errors associated with motion artifact in raster-scanned images and uncertainty of the cell angle relative to the imaging plane. Monte-Carlo simulations were used to guide analysis of SL measurements by determining error bounds as a function of measurement path length. The mode of the distribution of SL measurements in resting Langendorff-perfused heart is 1.95 mum (n = 167 measurements from N = 11 hearts) after correction for tissue orientation, which was significantly greater than that in isolated cells (1.71 mum, n = 346, N = 9 isolations) or ventricular slice preparations (1.79 mum, n = 79, N = 3 hearts) under our experimental conditions. Furthermore, we find that edema in arrested Langendorff-perfused heart is associated with a mean SL increase; this occurs as a function of time ex vivo and correlates with tissue volume changes determined by magnetic resonance imaging. Our results highlight that the proposed method can be used to monitor SL in living cells and that different experimental models from the same species may display significantly different SL values under otherwise comparable conditions, which has implications for experiment design, as well as comparison and interpretation of data.


Subject(s)
Microscopy, Fluorescence/methods , Myocytes, Cardiac/physiology , Myocytes, Cardiac/ultrastructure , Sarcomeres/physiology , Sarcomeres/ultrastructure , Algorithms , Animals , Cell Separation , Edema/pathology , Fluorescent Dyes , Heart Arrest, Induced , Image Processing, Computer-Assisted , In Vitro Techniques , Magnetic Resonance Imaging , Monte Carlo Method , Myocardial Contraction/physiology , Pyridinium Compounds , Rats , Rats, Sprague-Dawley
7.
Biosystems ; 71(1-2): 71-80, 2003 Sep.
Article in English | MEDLINE | ID: mdl-14568208

ABSTRACT

According to the classic model initially formulated by Mines, reentrant cardiac arrhythmias may be associated with waves circulating in a ring geometry. This study was designed to study the dynamics of reentry in a ring geometry of cardiac tissue culture. Reentrant calcium waves in rings of cultured embryonic chick cardiac myocytes were imaged using a macroscope to monitor the fluorescence of intracellular Calcium Green-1 dye. The rings displayed a variety of stable rhythms including pacemaker activity and spontaneous reentry. Waves originating from a localized pacemaker could lead to reentry as a consequence of unidirectional block. In addition, more complex patterns were observed due to the interactions between reentrant and pacemaker rhythms. These rhythms included instances in which pacemakers accelerated the reentrant rhythm, and instances in which the excitation was blocked in the vicinity of pacemakers. During reentrant activity an appropriately timed electrical stimulus could induce resetting of activity or cause complete annihilation of the propagating waves. This experimental preparation reveals many spontaneously occuring complex rhythms. These complex rhythms are hypothesized to reflect interactions between spontaneous pacemakers, wave propagation, refractory period, and overdrive suppression. This preparation may serve as a useful model system to further investigate complex dynamics arising during reentrant rhythms in cardiac tissue.


Subject(s)
Heart Conduction System/physiology , Models, Cardiovascular , Animals , Arrhythmias, Cardiac/physiopathology , Calcium Signaling , Chick Embryo , Culture Techniques , Electric Stimulation , Ventricular Function
8.
Prog Biophys Mol Biol ; 107(1): 4-10, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21745496

ABSTRACT

Cardiac experimental electrophysiology is in need of a well-defined Minimum Information Standard for recording, annotating, and reporting experimental data. As a step towards establishing this, we present a draft standard, called Minimum Information about a Cardiac Electrophysiology Experiment (MICEE). The ultimate goal is to develop a useful tool for cardiac electrophysiologists which facilitates and improves dissemination of the minimum information necessary for reproduction of cardiac electrophysiology research, allowing for easier comparison and utilisation of findings by others. It is hoped that this will enhance the integration of individual results into experimental, computational, and conceptual models. In its present form, this draft is intended for assessment and development by the research community. We invite the reader to join this effort, and, if deemed productive, implement the Minimum Information about a Cardiac Electrophysiology Experiment standard in their own work.


Subject(s)
Electrophysiological Phenomena , Heart/physiology , Information Dissemination/methods , Models, Biological , Research Design/standards , Animals , Humans , Reference Standards , Reproducibility of Results
9.
Proc Natl Acad Sci U S A ; 95(17): 10283-7, 1998 Aug 18.
Article in English | MEDLINE | ID: mdl-9707639

ABSTRACT

Rotating waves (rotors) of cellular activity were observed in nonconfluent cultures of embryonic chick heart cells by using a macroscopic imaging system that detected fluorescence from intracellular Ca2+. Unlike previous observations of rotors or spiral waves in other systems, the rotors did not persist but exhibited a repetitive pattern of spontaneous onset and offset leading to a bursting rhythm. Similar dynamics were observed in a cellular automaton model of excitable media that incorporates spontaneous initiation of activity, and a decrease of excitability as a consequence of rapid activity (fatigue). These results provide a mechanism for bursting dynamics in normal and pathological biological processes.


Subject(s)
Calcium/metabolism , Myocardium/metabolism , Animals , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Cells, Cultured , Chick Embryo , Fluorescence , Heart/physiology , Humans , Intracellular Fluid/metabolism , Ion Transport , Models, Cardiovascular , Myocardium/cytology , Periodicity
SELECTION OF CITATIONS
SEARCH DETAIL