Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Nat Immunol ; 25(7): 1207-1217, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38802512

ABSTRACT

The contribution of γδ T cells to immune responses is associated with rapid secretion of interferon-γ (IFN-γ). Here, we show a perinatal thymic wave of innate IFN-γ-producing γδ T cells that express CD8αß heterodimers and expand in preclinical models of infection and cancer. Optimal CD8αß+ γδ T cell development is directed by low T cell receptor signaling and through provision of interleukin (IL)-4 and IL-7. This population is pathologically relevant as overactive, or constitutive, IL-7R-STAT5B signaling promotes a supraphysiological accumulation of CD8αß+ γδ T cells in the thymus and peripheral lymphoid organs in two mouse models of T cell neoplasia. Likewise, CD8αß+ γδ T cells define a distinct subset of human T cell acute lymphoblastic leukemia pediatric patients. This work characterizes the normal and malignant development of CD8αß+ γδ T cells that are enriched in early life and contribute to innate IFN-γ responses to infection and cancer.


Subject(s)
Immunity, Innate , Interferon-gamma , Receptors, Antigen, T-Cell, gamma-delta , Receptors, Interleukin-7 , STAT5 Transcription Factor , Thymus Gland , Animals , Interferon-gamma/metabolism , Interferon-gamma/immunology , Mice , Humans , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Thymus Gland/immunology , Receptors, Interleukin-7/metabolism , STAT5 Transcription Factor/metabolism , Signal Transduction/immunology , Mice, Inbred C57BL , CD8-Positive T-Lymphocytes/immunology , Mice, Knockout , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Receptors, Antigen, T-Cell, alpha-beta/genetics , CD8 Antigens/metabolism , Female , Intraepithelial Lymphocytes/immunology , Intraepithelial Lymphocytes/metabolism , Interleukin-7/metabolism
2.
Blood ; 138(12): 1040-1052, 2021 09 23.
Article in English | MEDLINE | ID: mdl-33970999

ABSTRACT

Tight regulation of IL-7Rα expression is essential for normal T-cell development. IL-7Rα gain-of-function mutations are known drivers of T-cell acute lymphoblastic leukemia (T-ALL). Although a subset of patients with T-ALL display high IL7R messenger RNA levels and cases with IL7R gains have been reported, the impact of IL-7Rα overexpression, rather than mutational activation, during leukemogenesis remains unclear. In this study, overexpressed IL-7Rα in tetracycline-inducible Il7r transgenic and Rosa26 IL7R knockin mice drove potential thymocyte self-renewal, and thymus hyperplasia related to increased proliferation of T-cell precursors, which subsequently infiltrated lymph nodes, spleen, and bone marrow, ultimately leading to fatal leukemia. The tumors mimicked key features of human T-ALL, including heterogeneity in immunophenotype and genetic subtype between cases, frequent hyperactivation of the PI3K/Akt pathway paralleled by downregulation of p27Kip1 and upregulation of Bcl-2, and gene expression signatures evidencing activation of JAK/STAT, PI3K/Akt/mTOR and Notch signaling. Notably, we also found that established tumors may no longer require high levels of IL-7R expression upon secondary transplantation and progressed in the absence of IL-7, but remain sensitive to inhibitors of IL-7R-mediated signaling ruxolitinib (Jak1), AZD1208 (Pim), dactolisib (PI3K/mTOR), palbociclib (Cdk4/6), and venetoclax (Bcl-2). The relevance of these findings for human disease are highlighted by the fact that samples from patients with T-ALL with high wild-type IL7R expression display a transcriptional signature resembling that of IL-7-stimulated pro-T cells and, critically, of IL7R-mutant cases of T-ALL. Overall, our study demonstrates that high expression of IL-7Rα can promote T-cell tumorigenesis, even in the absence of IL-7Rα mutational activation.


Subject(s)
Carcinogenesis , Gene Expression Regulation, Leukemic , Mutation , Neoplasm Proteins , Neoplasms, Experimental , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Interleukin-7 , Animals , Carcinogenesis/genetics , Carcinogenesis/metabolism , Humans , Mice , Mice, Transgenic , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Receptors, Interleukin-7/biosynthesis , Receptors, Interleukin-7/genetics , Signal Transduction , Thymocytes/metabolism
3.
Nat Commun ; 12(1): 7268, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34907175

ABSTRACT

Interleukin-7 receptor α (encoded by IL7R) is essential for lymphoid development. Whether acute lymphoblastic leukemia (ALL)-related IL7R gain-of-function mutations can trigger leukemogenesis remains unclear. Here, we demonstrate that lymphoid-restricted mutant IL7R, expressed at physiological levels in conditional knock-in mice, establishes a pre-leukemic stage in which B-cell precursors display self-renewal ability, initiating leukemia resembling PAX5 P80R or Ph-like human B-ALL. Full transformation associates with transcriptional upregulation of oncogenes such as Myc or Bcl2, downregulation of tumor suppressors such as Ikzf1 or Arid2, and major IL-7R signaling upregulation (involving JAK/STAT5 and PI3K/mTOR), required for leukemia cell viability. Accordingly, maximal signaling drives full penetrance and early leukemia onset in homozygous IL7R mutant animals. Notably, we identify 2 transcriptional subgroups in mouse and human Ph-like ALL, and show that dactolisib and sphingosine-kinase inhibitors are potential treatment avenues for IL-7R-related cases. Our model, a resource to explore the pathophysiology and therapeutic vulnerabilities of B-ALL, demonstrates that IL7R can initiate this malignancy.


Subject(s)
Interleukin-7 Receptor alpha Subunit/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival/genetics , Gain of Function Mutation , Heterozygote , Homozygote , Humans , Interleukin-7 Receptor alpha Subunit/metabolism , Mice , Penetrance , Precancerous Conditions/genetics , Precancerous Conditions/pathology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cells, B-Lymphoid/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL