Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Mol Cell Proteomics ; 20: 100109, 2021.
Article in English | MEDLINE | ID: mdl-34129944

ABSTRACT

Many small ORFs embedded in long noncoding RNA (lncRNA) transcripts have been shown to encode biologically functional polypeptides (small ORF-encoded polypeptides [SEPs]) in different organisms. Despite some novel SEPs have been found, the identification is still hampered by their poor predictability, diminutive size, and low relative abundance. Here, we take advantage of NONCODE, a repository containing the most complete collection and annotation of lncRNA transcripts from different species, to build a novel database that attempts to maximize a collection of SEPs from human and mouse lncRNA transcripts. In order to further improve SEP discovery, we implemented two effective and complementary polypeptide enrichment strategies using 30-kDa molecular weight cutoff filter and C8 solid-phase extraction column. These combined strategies enabled us to discover 353 SEPs from eight human cell lines and 409 SEPs from three mouse cell lines and eight mouse tissues. Importantly, 19 of them were then verified through in vitro expression, immunoblotting, parallel reaction monitoring, and synthetic peptides. Subsequent bioinformatics analysis revealed that some of the physical and chemical properties of these novel SEPs, including amino acid composition and codon usage, are different from those commonly found in canonical proteins. Intriguingly, nearly 65% of the identified SEPs were found to be initiated with non-AUG start codons. The 762 novel SEPs probably represent the largest number of SEPs detected by MS reported to date. These novel SEPs might not only provide new clues for the annotation of noncoding elements in the genome but also serve as a valuable resource for functional study.


Subject(s)
Open Reading Frames , Peptides , RNA, Long Noncoding , Animals , Cell Line , Female , Humans , Male , Mass Spectrometry , Mice, Inbred C57BL
2.
J Lipid Res ; 63(9): 100251, 2022 09.
Article in English | MEDLINE | ID: mdl-35841948

ABSTRACT

The outer membrane (OM) of Gram-negative bacteria is an evolving antibiotic barrier composed of a glycerophospholipid (GP) inner leaflet and a lipopolysaccharide (LPS) outer leaflet. The two-component regulatory system CrrAB has only recently been reported to confer high-level polymyxin resistance and virulence in Klebsiella pneumoniae. Mutations in crrB have been shown to lead to the modification of the lipid A moiety of LPS through CrrAB activation. However, functions of CrrAB activation in the regulation of other lipids are unclear. Work here demonstrates that CrrAB activation not only stimulates LPS modification but also regulates synthesis of acyl-glycerophosphoglycerols (acyl-PGs), a lipid species with undefined functions and biosynthesis. Among all possible modulators of acyl-PG identified from proteomic data, we found expression of lipid A palmitoyltransferase (PagP) was significantly upregulated in the crrB mutant. Furthermore, comparative lipidomics showed that most of the increasing acyl-PG activated by CrrAB was decreased after pagP knockout with CRISPR-Cas9. These results suggest that PagP also transfers a palmitate chain from GPs to PGs, generating acyl-PGs. Further investigation revealed that PagP mainly regulates the GP contents within the OM, leading to an increased ratio of acyl-PG to PG species and improving OM hydrophobicity, which may contribute to resistance against certain cationic antimicrobial peptides resistance upon LPS modification. Taken together, this work suggests that CrrAB regulates the palmitoylation of PGs and lipid A within the OM through upregulated PagP, which functions together to form an outer membrane barrier critical for bacterial survival.


Subject(s)
Escherichia coli Proteins , Lipoylation , Acyltransferases/metabolism , Anti-Bacterial Agents , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Glycerophosphates , Glycerophospholipids , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Lipid A/metabolism , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , Palmitates/metabolism , Polymyxins/metabolism , Proteomics
3.
Nature ; 538(7626): 537-541, 2016 10 27.
Article in English | MEDLINE | ID: mdl-27698420

ABSTRACT

Intracellular Ca2+ signalling processes are fundamental to muscle contraction, neurotransmitter release, cell growth and apoptosis. Release of Ca2+ from the intracellular stores is supported by a series of ion channels in sarcoplasmic or endoplasmic reticulum (SR/ER). Among them, two isoforms of the trimeric intracellular cation (TRIC) channel family, named TRIC-A and TRIC-B, modulate the release of Ca2+ through the ryanodine receptor or inositol triphosphate receptor, and maintain the homeostasis of ions within SR/ER lumen. Genetic ablations or mutations of TRIC channels are associated with hypertension, heart disease, respiratory defects and brittle bone disease. Despite the pivotal function of TRIC channels in Ca2+ signalling, their pore architectures and gating mechanisms remain unknown. Here we present the structures of TRIC-B1 and TRIC-B2 channels from Caenorhabditis elegans in complex with endogenous phosphatidylinositol-4,5-biphosphate (PtdIns(4,5)P2, also known as PIP2) lipid molecules. The TRIC-B1/B2 proteins and PIP2 assemble into a symmetrical homotrimeric complex. Each monomer contains an hourglass-shaped hydrophilic pore contained within a seven-transmembrane-helix domain. Structural and functional analyses unravel the central role of PIP2 in stabilizing the cytoplasmic gate of the ion permeation pathway and reveal a marked Ca2+-induced conformational change in a cytoplasmic loop above the gate. A mechanistic model has been proposed to account for the complex gating mechanism of TRIC channels.


Subject(s)
Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/chemistry , Calcium Channels/chemistry , Calcium Channels/metabolism , Ion Channel Gating , Amino Acid Sequence , Animals , Calcium/metabolism , Calcium/pharmacology , Crystallography, X-Ray , Cytoplasm/metabolism , Hydrophobic and Hydrophilic Interactions , Ion Channel Gating/drug effects , Models, Molecular , Phosphatidylinositol 4,5-Diphosphate/metabolism , Porosity , Protein Multimerization/drug effects , Protein Structure, Quaternary/drug effects
4.
Mol Cell Proteomics ; 19(4): 672-689, 2020 04.
Article in English | MEDLINE | ID: mdl-32102970

ABSTRACT

Large-scale identification of N-linked intact glycopeptides by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) in human serum is challenging because of the wide dynamic range of serum protein abundances, the lack of a complete serum N-glycan database and the existence of proteoforms. In this regard, a spectral library search method was presented for the identification of N-linked intact glycopeptides from N-linked glycoproteins in human serum with target-decoy and motif-specific false discovery rate (FDR) control. Serum proteins were firstly separated into low-abundance and high-abundance proteins by acetonitrile (ACN) precipitation. After digestion, the N-linked intact glycopeptides were enriched by hydrophilic interaction liquid chromatography (HILIC) and a portion of the enriched N-linked intact glycopeptides were processed by Peptide-N-Glycosidase F (PNGase F) to generate N-linked deglycopeptides. Both N-linked intact glycopeptides and deglycopeptides were analyzed by LC-MS/MS. From N-linked deglycopeptides data sets, 764 N-linked glycoproteins, 1699 N-linked glycosites and 3328 unique N-linked deglycopeptides were identified. Four types of N-linked glycosylation motifs (NXS/T/C/V, X≠P) were used to recognize the N-linked deglycopeptides. The spectra of these N-linked deglycopeptides were utilized for N-linked deglycopeptides library construction and identification of N-linked intact glycopeptides. A database containing 739 N-glycan masses was constructed and utilized during spectral library search for the identification of N-linked intact glycopeptides. In total, 526 N-linked glycoproteins, 1036 N-linked glycosites, 22,677 N-linked intact glycopeptides and 738 N-glycan masses were identified under 1% FDR, representing the most in-depth serum N-glycoproteome identified by LC-MS/MS at N-linked intact glycopeptide level.


Subject(s)
Glycopeptides/blood , Hydrophobic and Hydrophilic Interactions , Peptide Library , Amino Acid Sequence , Biomarkers/blood , Blood Coagulation , Blood Proteins/analysis , Blood Proteins/chemistry , Cell Adhesion Molecules/blood , Cell Lineage , Complement System Proteins/metabolism , Databases, Protein , Glycopeptides/chemistry , Glycoproteins/blood , Glycoproteins/chemistry , Glycosylation , Humans , Molecular Weight , Polysaccharides/chemistry , Reference Standards , Reproducibility of Results , Software
5.
J Proteome Res ; 19(8): 3340-3351, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32618196

ABSTRACT

Low-molecular weight proteins and peptides (LMWPs, <30 kDa) in human plasma serve as potential biomarkers or drug targets and are endowed with desirable traits for biological and clinical studies. However, the identification of LMWPs from plasma is retarded by high-abundance proteins, high-molecular weight proteins, and lipids. Here, we present a sequential precipitation and delipidation (SPD) method for the efficient enrichment of LMWPs based on methyl-tert-butyl ether/methanol/water systems. The enriched LMWP sample was analyzed by single-shot liquid chromatography-tandem mass spectrometry employing both HCD and EThcD without tryptic digestion, and 725 peptides were identified on average. The LMWP sample was also digested and analyzed using a bottom-up proteomics pipeline, and 289 proteins were identified, of which 129 (44.6%) proteins were less than 30 kDa and lipoprotein-associated proteins were significantly enriched. Additionally, 25 neuropeptides and 19 long noncoding RNA-encoded polypeptides were identified. Taken together, the SPD method shows good sensitivity and reproducibility when compared with other enrichment methods and has great potential for clinical biomarker discovery and application.


Subject(s)
Pharmaceutical Preparations , Proteomics , Humans , Molecular Weight , Peptides , Reproducibility of Results
6.
Article in English | MEDLINE | ID: mdl-32229491

ABSTRACT

Polymyxins are increasingly used as the critical last-resort therapeutic options for multidrug-resistant Gram-negative bacteria. Unfortunately, polymyxin resistance has increased gradually over the past few years. Although studies on polymyxin mechanisms are expanding, systemwide analyses of the underlying mechanism for polymyxin resistance and stress response are still lacking. To understand how Klebsiella pneumoniae adapts to colistin (polymyxin E) pressure, we carried out proteomic analysis of a K. pneumoniae strain cultured with different concentrations of colistin. Our results showed that the proteomic responses to colistin treatment in K. pneumoniae involve several pathways, including (i) gluconeogenesis and the tricarboxylic acid (TCA) cycle, (ii) arginine biosynthesis, (iii) porphyrin and chlorophyll metabolism, and (iv) enterobactin biosynthesis. Interestingly, decreased abundances of class A ß-lactamases, including TEM, SHV-11, and SHV-4, were observed in cells treated with colistin. Moreover, we present comprehensive proteome atlases of paired polymyxin-susceptible and -resistant K. pneumoniae strains. The polymyxin-resistant strain Ci, a mutant of K. pneumoniae ATCC BAA 2146, showed a missense mutation in crrB This crrB mutant, which displayed lipid A modification with 4-amino-4-deoxy-l-arabinose (l-Ara4N) and palmitoylation, showed striking increases in the expression of CrrAB, PmrAB, PhoPQ, ArnBCADT, and PagP. We hypothesize that crrB mutations induce elevated expression of the arnBCADTEF operon and pagP via PmrAB and PhoPQ. Moreover, the multidrug efflux pump KexD, which was induced by crrB mutation, also contributed to colistin resistance. Overall, our results demonstrated proteomic responses to colistin treatment and the mechanism of CrrB-mediated colistin resistance, which may offer valuable information on the management of polymyxin resistance.


Subject(s)
Colistin , Klebsiella pneumoniae , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Colistin/pharmacology , Drug Resistance, Bacterial/genetics , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , Mutation , Proteomics
7.
Brief Bioinform ; 19(4): 636-643, 2018 07 20.
Article in English | MEDLINE | ID: mdl-28137767

ABSTRACT

Small proteins is the general term for proteins with length shorter than 100 amino acids. Identification and functional studies of small proteins have advanced rapidly in recent years, and several studies have shown that small proteins play important roles in diverse functions including development, muscle contraction and DNA repair. Identification and characterization of previously unrecognized small proteins may contribute in important ways to cell biology and human health. Current databases are generally somewhat deficient in that they have either not collected small proteins systematically, or contain only predictions of small proteins in a limited number of tissues and species. Here, we present a specifically designed web-accessible database, small proteins database (SmProt, http://bioinfo.ibp.ac.cn/SmProt), which is a database documenting small proteins. The current release of SmProt incorporates 255 010 small proteins computationally or experimentally identified in 291 cell lines/tissues derived from eight popular species. The database provides a variety of data including basic information (sequence, location, gene name, organism, etc.) as well as specific information (experiment, function, disease type, etc.). To facilitate data extraction, SmProt supports multiple search options, including species, genome location, gene name and their aliases, cell lines/tissues, ORF type, gene type, PubMed ID and SmProt ID. SmProt also incorporates a service for the BLAST alignment search and provides a local UCSC Genome Browser. Additionally, SmProt defines a high-confidence set of small proteins and predicts the functions of the small proteins.


Subject(s)
Codon , Databases, Factual , Molecular Sequence Annotation , Proteins/genetics , RNA, Untranslated/genetics , RNA/genetics , Software , Humans , Proteins/metabolism
8.
Proc Natl Acad Sci U S A ; 114(36): E7622-E7631, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28827364

ABSTRACT

The blood-brain barrier (BBB) establishes a protective interface between the central neuronal system and peripheral blood circulation and is crucial for homeostasis of the CNS. BBB formation starts when the endothelial cells (ECs) invade the CNS and pericytes are recruited to the nascent vessels during embryogenesis. Despite the essential function of pericyte-EC interaction during BBB development, the molecular mechanisms coordinating the pericyte-EC behavior and communication remain incompletely understood. Here, we report a single cell receptor, CD146, that presents dynamic expression patterns in the cerebrovasculature at the stages of BBB induction and maturation, coordinates the interplay of ECs and pericytes, and orchestrates BBB development spatiotemporally. In mouse brain, CD146 is first expressed in the cerebrovascular ECs of immature capillaries without pericyte coverage; with increased coverage of pericytes, CD146 could only be detected in pericytes, but not in cerebrovascular ECs. Specific deletion of Cd146 in mice ECs resulted in reduced brain endothelial claudin-5 expression and BBB breakdown. By analyzing mice with specific deletion of Cd146 in pericytes, which have defects in pericyte coverage and BBB integrity, we demonstrate that CD146 functions as a coreceptor of PDGF receptor-ß to mediate pericyte recruitment to cerebrovascular ECs. Moreover, we found that the attached pericytes in turn down-regulate endothelial CD146 by secreting TGF-ß1 to promote further BBB maturation. These results reveal that the dynamic expression of CD146 controls the behavior of ECs and pericytes, thereby coordinating the formation of a mature and stable BBB.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/metabolism , Cell Communication/physiology , Endothelial Cells/metabolism , Pericytes/metabolism , Animals , Blood-Brain Barrier/physiology , Brain/physiology , CD146 Antigen/metabolism , Down-Regulation/physiology , Endothelial Cells/physiology , Mice , Mice, Knockout , Pericytes/physiology , Receptor, Platelet-Derived Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism
9.
Nucleic Acids Res ; 45(7): 4142-4157, 2017 04 20.
Article in English | MEDLINE | ID: mdl-27998933

ABSTRACT

miRNAs play important roles during mammalian spermatogenesis. However, the function of most miRNAs in spermatogenesis and the underlying mechanisms remain unknown. Here, we report that miR-202 is highly expressed in mouse spermatogonial stem cells (SSCs), and is oppositely regulated by Glial cell-Derived Neurotrophic Factor (GDNF) and retinoic acid (RA), two key factors for SSC self-renewal and differentiation. We used inducible CRISPR-Cas9 to knockout miR-202 in cultured SSCs, and found that the knockout SSCs initiated premature differentiation accompanied by reduced stem cell activity and increased mitosis and apoptosis. Target genes were identified with iTRAQ-based proteomic analysis and RNA sequencing, and are enriched with cell cycle regulators and RNA-binding proteins. Rbfox2 and Cpeb1 were found to be direct targets of miR-202 and Rbfox2 but not Cpeb1, is essential for the differentiation of SSCs into meiotic cells. Accordingly, an SSC fate-regulatory network composed of signaling molecules of GDNF and RA, miR-202 and diverse downstream effectors has been identified.


Subject(s)
Adult Germline Stem Cells/metabolism , Cell Cycle/genetics , MicroRNAs/metabolism , RNA Splicing Factors/biosynthesis , Adult Germline Stem Cells/cytology , Animals , Gene Knockout Techniques , Male , Meiosis/genetics , Mice, Inbred C57BL , Mice, Inbred DBA , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Proteomics , Sequence Analysis, RNA , Spermatogenesis/genetics , Transcription Factors/biosynthesis , mRNA Cleavage and Polyadenylation Factors/biosynthesis
10.
Mol Cell Proteomics ; 14(1): 227-36, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25418362

ABSTRACT

Protein lysine malonylation, a newly identified protein post-translational modification (PTM), has been proved to be evolutionarily conserved and is present in both eukaryotic and prokaryotic cells. However, its potential roles associated with human diseases remain largely unknown. In the present study, we observed an elevated lysine malonylation in a screening of seven lysine acylations in liver tissues of db/db mice, which is a typical model of type 2 diabetes. We also detected an elevated lysine malonylation in ob/ob mice, which is another model of type 2 diabetes. We then performed affinity enrichment coupled with proteomic analysis on liver tissues of both wild-type (wt) and db/db mice and identified a total of 573 malonylated lysine sites from 268 proteins. There were more malonylated lysine sites and proteins in db/db than in wt mice. Five proteins with elevated malonylation were verified by immunoprecipitation coupled with Western blot analysis. Bioinformatic analysis of the proteomic results revealed the enrichment of malonylated proteins in metabolic pathways, especially those involved in glucose and fatty acid metabolism. In addition, the biological role of lysine malonylation was validated in an enzyme of the glycolysis pathway. Together, our findings support a potential role of protein lysine malonylation in type 2 diabetes with possible implications for its therapy in the future.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Lysine/metabolism , Protein Processing, Post-Translational , Animals , Disease Models, Animal , Liver/metabolism , Mice, Inbred C57BL , Obesity/metabolism , Proteins/metabolism
11.
J Lipid Res ; 57(3): 388-97, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26733148

ABSTRACT

Phospholipids (PLs), one of the lipid categories, are not only the primary building blocks of cellular membranes, but also can be split to produce products that function as second messengers in signal transduction and play a pivotal role in numerous cellular processes, including cell growth, survival, and motility. Here, we present an integrated novel method that combines a fast and robust TMS-diazomethane-based phosphate derivatization and isotopic labeling strategy, which enables simultaneous profiling and relative quantification of PLs from biological samples. Our results showed that phosphate methylation allows fast and sensitive identification of the six major PL classes, including their lysophospholipid counterparts, under positive ionization mode. The isotopic labeling of endogenous PLs was achieved by deuterated diazomethane, which was generated through acid-catalyzed hydrogen/deuterium (H/D) exchange and methanolysis of TMS-diazomethane during the process of phosphate derivatization. The measured H/D ratios of unlabeled and labeled PLs, which were mixed in known proportions, indicated that the isotopic labeling strategy is capable of providing relative quantitation with adequate accuracy, reproducibility, and a coefficient of variation of 9.1%, on average. This novel method offers unique advantages over existing approaches and presents a powerful tool for research of PL metabolism and signaling.


Subject(s)
Lysophospholipids/metabolism , Metabolomics/methods , Phospholipids/metabolism , Cell Line, Tumor , Diazomethane/metabolism , Humans , Isotope Labeling , Methylation , Phospholipids/chemistry , Time Factors
12.
J Proteome Res ; 15(12): 4234-4244, 2016 12 02.
Article in English | MEDLINE | ID: mdl-27774790

ABSTRACT

Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomic methods have been widely used to identify lysine acylation proteins. However, these experimental approaches often fail to detect proteins that are in low abundance or absent in specific biological samples. To circumvent these problems, we developed a computational method to predict lysine acylation, including acetylation, malonylation, succinylation, and glutarylation. The prediction algorithm integrated flanking primary sequence determinants and evolutionary conservation of acylated lysine as well as multiple protein functional annotation features including gene ontology, conserved domains, and protein-protein interactions. The inclusion of functional annotation features increases predictive power oversimple sequence considerations for four of the acylation species evaluated. For example, the Matthews correlation coefficient (MCC) for the prediction of malonylation increased from 0.26 to 0.73. The performance of prediction was validated against an independent data set for malonylation. Likewise, when tested with independent data sets, the algorithm displayed improved sensitivity and specificity over existing methods. Experimental validation by Western blot experiments and LC-MS/MS detection further attested to the performance of prediction. We then applied our algorithm on to the mouse proteome and reported the global-scale prediction of lysine acetylation, malonylation, succinylation, and glutarylation, which should serve as a valuable resource for future functional studies.


Subject(s)
Acylation , Computational Biology/methods , Lysine/metabolism , Proteins/metabolism , Proteomics/methods , Algorithms , Amino Acid Sequence , Animals , Chromatography, Liquid , Mice , Protein Processing, Post-Translational , Tandem Mass Spectrometry
13.
J Proteome Res ; 14(8): 3390-402, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26147661

ABSTRACT

One of the major challenges in prostate cancer therapy remains the development of effective treatments for castration-resistant prostate cancer (CRPC), as the underlying mechanisms for its progression remain elusive. Previous studies showed that androgen receptor (AR) is crucially involved in regulation of metabolism in prostate cancer (PCa) cells throughout the transition from early stage, androgen-sensitive PCa to androgen-independent CRPC. AR achieves such metabolic rewiring directively either via its transcriptional activity or via interactions with AMP-activated protein kinase (AMPK). However, due to the heterogeneous expression and activity status of AR in PCa cells, it remains a challenge to investigate the links between AR status and metabolic alterations. To this end, we compared the proteomes of three pairs of androgen-sensitive (AS) and androgen-independent (AI) PCa cell lines, namely, PC3-AR(+)/PC3, 22Rv1/Du145, and LNCaP/C42B, using an iTRAQ labeling approach. Our results revealed that most of the differentially expressed proteins between each pair function in metabolism, indicating a metabolic shift between AS and AI cells, as further validated by multiple reaction monitoring (MRM)-based quantification of nucleotides and relative comparison of fatty acids between these cell lines. Furthermore, increased adenylate kinase isoenzyme 1 (AK1) in AS relative to AI cells may result in activation of AMPK, representing a major regulatory factor involved in the observed metabolic shift in PCa cells.


Subject(s)
Peptides/metabolism , Proteome/metabolism , Proteomics/methods , Tandem Mass Spectrometry/methods , AMP-Activated Protein Kinases/metabolism , Acetyl Coenzyme A/metabolism , Adenylate Kinase/metabolism , Cell Line, Tumor , Chromatography, Liquid/methods , Cluster Analysis , Fatty Acids/metabolism , Humans , Isotope Labeling/methods , Male , Mitochondria/metabolism , Models, Biological , Nucleotides/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Proteome/classification , Receptors, Androgen/metabolism , Reproducibility of Results , Signal Transduction
14.
Anal Chem ; 87(1): 513-21, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25495789

ABSTRACT

Phosphoinositides, the phosphorylated derivatives of phosphatidylinositol (PtdIns), are key regulators of many fundamental biological processes, including cell growth, proliferation, and motility. Here, we present a novel method for rapid, sensitive, and simultaneous profiling of phosphatidylinositol trisphosphate (PtdInsP3), phosphatidylinositol bisphosphate (PtdInsP2), and phosphatidylinositol phosphate (PtdInsP) of different fatty acid compositions. This method is based on a technique called "charged diacylglycerol fragment ion-specific multiple precursor ion scanning" (DAG(+)-specific MPIS), coupled with prior phosphate methylation. Using DAG(+)-specific MPIS, we were able to identify 32 PtdIns, 28 PtdInsP, 30 PtdInsP2, and 3 PtdInsP3 molecular species from bovine brain extracts or prostatic cancer cell lines in an efficient and time-saving manner. Our analysis revealed a large range of fatty acyl compositions in phosphoinositides not obtained previously from mammalian samples. We also developed a method that involves isotopic labeling of endogenous phosphoinositides with deuterated diazomethane (CD2N2) for quantitation of phosphoinositides. CD2N2 was generated in situ through acid-catalyzed H/D exchange and methanolysis of trimethylsilyl diazomethane (TMS-diazomethane). Phosphoinositides, extracted from a PC3 prostatic cancer cell line, were labeled either with CH2N2 or CD2N2 and mixed in known proportions for DAG(+)-specific MPIS-based mass spectrometry (MS) analysis. The results indicate that isotopic labeling is capable of providing accurate quantitation of PtdInsP3, PtdInsP2, and PtdInsP with adequate linearity as well as high reproducibility with an average coefficient variation of 18.9%. More importantly, this new methods excluded the need for multiple phosphoinositide internal standards. DAG(+)-specific MPIS and isotopic labeling based MS analysis of phosphoinositides offers unique advantages over existing approaches and presents a powerful tool for research of phosphoinositide metabolism.


Subject(s)
Lipids/analysis , Phosphates/chemistry , Phosphatidylinositols/analysis , Prostatic Neoplasms/metabolism , Spectrometry, Mass, Secondary Ion/methods , Animals , Cattle , Chromatography, Liquid , Diazomethane/chemistry , Humans , Isotope Labeling , Male , Methylation
15.
Mol Cell Proteomics ; 12(5): 1144-57, 2013 May.
Article in English | MEDLINE | ID: mdl-23325766

ABSTRACT

Mammalian spermatogenesis consists of many cell types and biological processes and serves as an excellent model for studying gene regulation at transcriptional and post-transcriptional levels. Many key proteins, miRNAs, and perhaps piRNAs have been shown to be involved in post-transcriptional regulation of spermatogenesis. However, a systematic method for assessing the relationship between protein and mRNA expression has not been available for studying mechanisms of post-transcriptional regulation. In the present study, we used the iTRAQ-based quantitative proteomic approach to identify 2008 proteins in mouse type A spermatogonia, pachytene spermatocytes, round spermatids, and elongative spermatids with high confidence. Of these proteins, 1194 made up four dynamically changing clusters, which reflect the mitotic amplification, meiosis, and post-meiotic development of germ cells. We identified five major regulatory mechanisms termed "transcript only," "transcript degradation," "translation repression," "translation de-repression," and "protein degradation" based on changes in protein level relative to changes in mRNA level at the mitosis/meiosis transition and the meiosis/post-meiotic development transition. We found that post-transcriptional regulatory mechanisms are related to the generation of piRNAs and antisense transcripts. Our results provide a valuable inventory of proteins produced during mouse spermatogenesis and contribute to elucidating the mechanisms of the post-transcriptional regulation of gene expression in mammalian spermatogenesis.


Subject(s)
Proteome/metabolism , RNA Interference , Spermatogenesis/genetics , Transcriptome , Animals , Gene Expression Profiling , Male , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Molecular Sequence Annotation , Oligonucleotide Array Sequence Analysis , Proteome/genetics , Proteomics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Spermatids/metabolism , Testis/cytology , Testis/metabolism
16.
Clin Proteomics ; 11(1): 25, 2014.
Article in English | MEDLINE | ID: mdl-24994967

ABSTRACT

BACKGROUND: Glycoproteins comprise a large portion of the salivary proteome and have great potential for biomarker discovery and disease diagnosis. However, the rate of production and the concentration of whole saliva change with age, gender and physiological states of the human body. Therefore, a thorough understanding of the salivary glycoproteome of healthy individuals of different ages and genders is a prerequisite for saliva to have clinical utility. METHODS: Formerly N-linked glycopeptides were isolated from the pooled whole saliva of six age and gender groups by hydrazide chemistry and hydrophilic affinity methods followed by mass spectrometry identification. Selected physiochemical characteristics of salivary glycoproteins were analyzed, and the salivary glycoproteomes of different age and gender groups were compared based on their glycoprotein components and gene ontology. RESULTS AND DISCUSSION: Among 85 N-glycoproteins identified in healthy human saliva, the majority were acidic proteins with low molecular weight. The numbers of salivary N-glycoproteins increased with age. Fifteen salivary glycoproteins were identified as potential age- or gender-associated glycoproteins, and many of them have functions related to innate immunity against microorganisms and oral cavity protection. Moreover, many salivary glycoproteins have been previously reported as disease related glycoproteins. This study reveals the important role of salivary glycoproteins in the maintenance of oral health and homeostasis and the great potential of saliva for biomarker discovery and disease diagnosis.

17.
Proteomics ; 13(20): 3030-9, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23956156

ABSTRACT

As glucose-stimulated insulin secretion of pancreatic ß cell is triggered and promoted by the metabolic messengers derived from mitochondria, mitochondria take a central stage in the normal function of ß cells. ß cells in diabetics were chronically exposed to hyperglycemia stimulation, which have been reported to exert deleterious effects on ß-cell mitochondria. However, the mechanism of the toxic effects of hyperglycemia on ß-cell mitochondria was not clear. In this study, we characterized the biological functional changes of rat INS-1ß cells and their mitochondria with chronic exposure to hyperglycemia and created a research model of chronic hyperglycemia-induced dysfunctional ß cells with damaged mitochondria. Then, SILAC-based quantitative proteomic approach was used to compare the mitochondrial protein expression from high glucose treated INS-1ß cells and control cells. The expression of some mitochondrial proteins was found with significant changes. Functional classification revealed most of these proteins were related with oxidative phosphorylation, mitochondrial protein biosynthesis, substances metabolism, transport, and cell death. These results presented some useful information about the effect of glucotoxicity on the ß-cell mitochondria.


Subject(s)
Glucose/toxicity , Insulin-Secreting Cells/pathology , Isotope Labeling/methods , Mitochondria/pathology , Mitochondrial Proteins/metabolism , Proteome/metabolism , Animals , Blotting, Western , Cell Line , Hyperglycemia/metabolism , Hyperglycemia/pathology , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/ultrastructure , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/ultrastructure , Rats
18.
Proteomics ; 13(5): 878-92, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23300094

ABSTRACT

The interaction of glycan-binding proteins (GBPs) and glycans plays a significant biological role that ranges from cell-cell recognition to cell trafficking, and glycoprotein targeting. The anomalies of GBPs related to the types and/or quantities were not clearly known in cancer incidence. It is imperative to identify and annotate the GBPs related with the canceration. Here the mannose-binding proteins (MBPs) from the clinical sera were isolated and identified by the mannose-magnetic particle conjugates and the high-accuracy MS analysis. Seventy-five MBPs from normal donors' sera and 79 MBPs from hepatocellular carcinoma patients' sera were identified and annotated. By using the stringent criteria of exponentially modified protein abundance index (emPAI) quantification, 12 MBPs were estimated to be significantly upregulated (emPAI ratio > 4) and nine MBPs were estimated to be significantly downregulated (emPAI ratio < 0.25) in the hepatocellular carcinoma sera. Real-time quantitative PCR, Western blotting, and protein microarrays were also used to confirm the altered MBPs expression level and the specific binding between the isolated MBPs and mannose. The sequence recognition motifs and structure preference of the isolated MBPs were characterized. The functional enrichment analysis revealed that over 57% of the isolated MBPs were binding protein and the upregulated MBPs were involved in cell death, tumor progression, and macromolecular complex remodeling.


Subject(s)
Carcinoma, Hepatocellular/blood , Liver Neoplasms/blood , Mannose-Binding Lectins/blood , Neoplasm Proteins/blood , Amino Acid Motifs , Amino Acid Sequence , Blotting, Western , Carcinoma, Hepatocellular/metabolism , Case-Control Studies , Chromatography, Liquid , Humans , Liver Neoplasms/metabolism , Mannose-Binding Lectins/chemistry , Mannose-Binding Lectins/genetics , Molecular Sequence Data , Neoplasm Proteins/metabolism , Protein Array Analysis , Real-Time Polymerase Chain Reaction , Tandem Mass Spectrometry
19.
FASEB J ; 26(9): 3811-21, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22649032

ABSTRACT

Nerve growth factor (NGF) is a dimeric molecule that modulates the survival, proliferation, and differentiation of nervous cells and is also known to act on cells of the immune system and endocrine system. NGFs extracted from mouse submaxillary gland and cobra venom have different immunological behaviors, yet the underlying mechanism remains unclear. Here we report the crystal structure of the NGF purified from Chinese cobra Naja naja atra (cNGF), which unexpectedly reveals a 2-tailed lipid molecule that is embedded between the two protomers of the NGF homodimer. In addition, crystallographic analysis indicated that the purified mouse NGF(mNGF) is free from lipid but can bind lysophosphatidylserine (lyso-PS) in the same pocket as cNGF. Bioassays indicated that the binding of lipid molecules to cNGF and mNGF are essential for their mast cell activation activity and abates their p75(NTR) binding capacity. Taken together, these results suggest a new mechanism for the regulation of the function of NGF.


Subject(s)
Lipids/chemistry , Nerve Growth Factors/chemistry , Nerve Growth Factors/pharmacology , Amino Acid Sequence , Animals , Crystallography, X-Ray , Elapidae , Histamine Release/drug effects , Humans , Mast Cells/drug effects , Models, Molecular , Molecular Sequence Data , Nerve Growth Factors/isolation & purification , Nerve Growth Factors/metabolism , Sequence Homology, Amino Acid , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Structure-Activity Relationship
20.
Cell Mol Immunol ; 20(8): 908-923, 2023 08.
Article in English | MEDLINE | ID: mdl-37308559

ABSTRACT

As one of the main tumor-infiltrating immune cell types, tumor-associated macrophages (TAMs) determine the efficacy of immunotherapy. However, limited knowledge about their phenotypically and functionally heterogeneous nature restricts their application in tumor immunotherapy. In this study, we identified a subpopulation of CD146+ TAMs that exerted antitumor activity in both human samples and animal models. CD146 expression in TAMs was negatively controlled by STAT3 signaling. Reducing this population of TAMs promoted tumor development by facilitating myeloid-derived suppressor cell recruitment via activation of JNK signaling. Interestingly, CD146 was involved in the NLRP3 inflammasome-mediated activation of macrophages in the tumor microenvironment, partially by inhibiting transmembrane protein 176B (TMEM176B), an immunoregulatory cation channel. Treatment with a TMEM176B inhibitor enhanced the antitumor activity of CD146+ TAMs. These data reveal a crucial antitumor role of CD146+ TAMs and highlight the promising immunotherapeutic approach of inhibiting CD146 and TMEM176B.


Subject(s)
Inflammasomes , Neoplasms , Animals , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , CD146 Antigen/metabolism , Macrophages , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL