Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Annu Rev Immunol ; 33: 823-74, 2015.
Article in English | MEDLINE | ID: mdl-25706096

ABSTRACT

Patients with autoinflammatory diseases present with noninfectious fever flares and systemic and/or disease-specific organ inflammation. Their excessive proinflammatory cytokine and chemokine responses can be life threatening and lead to organ damage over time. Studying such patients has revealed genetic defects that have helped unravel key innate immune pathways, including excessive IL-1 signaling, constitutive NF-κB activation, and, more recently, chronic type I IFN signaling. Discoveries of monogenic defects that lead to activation of proinflammatory cytokines have inspired the use of anticytokine-directed treatment approaches that have been life changing for many patients and have led to the approval of IL-1-blocking agents for a number of autoinflammatory conditions. In this review, we describe the genetically characterized autoinflammatory diseases, we summarize our understanding of the molecular pathways that drive clinical phenotypes and that continue to inspire the search for novel treatment targets, and we provide a conceptual framework for classification.


Subject(s)
Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Genetic Predisposition to Disease , Inflammation/genetics , Inflammation/immunology , Animals , Autoimmune Diseases/metabolism , Autoimmunity , Disease Models, Animal , Humans , Immunity, Innate , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/immunology , Immunologic Deficiency Syndromes/metabolism , Inflammation/metabolism , Inflammation Mediators/metabolism , Interferons/metabolism , Interleukin-1/metabolism , Lymphoproliferative Disorders/genetics , Lymphoproliferative Disorders/immunology , Lymphoproliferative Disorders/metabolism , Macrophage Activation/immunology , Macrophages/immunology , Macrophages/metabolism , NF-kappa B/metabolism , Signal Transduction
2.
Article in English | MEDLINE | ID: mdl-39303891

ABSTRACT

BACKGROUND: Cytokines are soluble signaling proteins that regulate inflammation and coordinate immune responses. Serum cytokine assays are increasingly used in medical practice, yet our understanding of cytokines as biomarkers for disease remains limited. OBJECTIVES: We aimed to analyze real-world single center usage of a multiplexed cytokine panel, correlate its results with diagnosis and severity, and explore its utility in pediatric practice. METHODS: A multiplexed cytokine panel, able to return same-day results, was implemented in April 2020 at our institution and its performance was validated for clinical use. Coded patient data were collected using a REDCap database, and correlations between cytokine levels and outcomes of interest were analyzed retrospectively. RESULTS: Cytokine levels correlate with acuity of care, with patients admitted to the pediatric intensive care unit (PICU) having the highest cytokine values. Patients with familial HLH (fHLH) showed prominent peaks in IFNγ, IL-10, and TNF, while patients with sepsis exhibited high IL-6 and IL-8 with relatively modest IFNγ, and cytokine release syndrome (CRS) post-CAR T cell therapy often demonstrated pan-panel positivity at peak levels, with a similar pattern as that of fHLH. A ratio of [IFNγ]+[IL-10]/[IL-6]+[IL-8] levels was able to distinguish fHLH and CRS from severe sepsis. CONCLUSIONS: Cytokine levels correlate with severity of illness and can help differentiate between syndromes that present similarly, including fHLH and CRS compared to sepsis. Cytokine panels can be used as biomarkers to inform diagnosis and management decisions, but significant work remains to dissect complex clinical patterns of disease.

3.
J Clin Immunol ; 45(1): 4, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264477

ABSTRACT

High ferritin is an important and sensitive biomarker for the various forms of hemophagocytic lymphohistiocytosis (HLH), a diverse and deadly group of cytokine storm syndromes. Early action to prevent immunopathology in HLH often includes empiric immunomodulation, which can complicate etiologic work-up and prevent collection of early/pre-treatment research samples. To address this, we instituted an alert system at UPMC Children's Hospital where serum ferritin > 1000 ng/mL triggered real-time chart review, assessment of whether the value reflected "inflammatory hyperferritnemia (IHF)", and biobanking of remnant samples from consenting IHF patients. We extracted relevant clinical data; periodically measured serum total IL-18, IL-18 binding protein (IL-18BP), and CXCL9; retrospectively classified patients by etiology into infectious, rheumatic, or immune dysregulation; and subjected a subgroup of samples to a 96-analyte biomarker screen. 180 patients were identified, 30.5% of which had IHF. Maximum ferritin levels were significantly higher in patients with IHF than with either hemoglobinopathy or transplant, and highly elevated total IL-18 levels were distinctive to patients with Stills Disease and/or Macrophage Activation Syndrome (MAS). Multi-analyte analysis showed elevation in proteins associated with cytotoxic lymphocytes in all IHF samples when compared to healthy controls and depression of proteins such as ANGPT1 and VEGFR2 in samples from hyperferritinemic sepsis patients relative to non-sepsis controls. This real-time IFH screen proved feasible and efficient, validated prior observations about the specificity of IL-18, enabled early sample collection from a complex population, suggested a unique vascular biomarker signature in hyperferritinemic sepsis, and expanded our understanding of IHF heterogeneity.


Subject(s)
Biomarkers , Ferritins , Hyperferritinemia , Interleukin-18 , Lymphohistiocytosis, Hemophagocytic , Humans , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/blood , Lymphohistiocytosis, Hemophagocytic/immunology , Biomarkers/blood , Female , Interleukin-18/blood , Male , Hyperferritinemia/diagnosis , Hyperferritinemia/blood , Child , Ferritins/blood , Child, Preschool , Infant , Adolescent , Diagnosis, Differential , Intercellular Signaling Peptides and Proteins/blood , Chemokine CXCL9/blood , Inflammation/diagnosis , Inflammation/blood , Inflammation/immunology , Retrospective Studies
4.
Adv Exp Med Biol ; 1448: 385-397, 2024.
Article in English | MEDLINE | ID: mdl-39117828

ABSTRACT

Cytokine Storm is a complex and heterogeneous state of life-threatening systemic inflammation and immunopathology. Autoinflammation is a mechanistic category of immune dysregulation wherein immunopathology originates due to poor regulation of innate immunity. The growing family of monogenic Systemic Autoinflammatory Diseases (SAIDs) has been a wellspring for pathogenic insights and proof-of-principle targeted therapeutic interventions. There is surprisingly little overlap between SAID and Cytokine Storm Syndromes, and there is a great deal to be inferred from those SAID that do, and do not, consistently lead to Cytokine Storm. This chapter will summarize how illustrations of the autoinflammatory paradigm have advanced the understanding of human inflammation, including the role of autoinflammation in familial HLH. Next, it will draw from monogenic SAID, both those with strong associations with cytokine storm and those without, to illustrate how the cytokine IL-18 links innate immune dysregulation and cytokine storm.


Subject(s)
Cytokine Release Syndrome , Immunity, Innate , Humans , Cytokine Release Syndrome/immunology , Interleukin-18/immunology , Interleukin-18/genetics , Inflammation/immunology , Hereditary Autoinflammatory Diseases/immunology , Hereditary Autoinflammatory Diseases/genetics , Animals , Cytokines/immunology , Cytokines/metabolism
5.
Adv Exp Med Biol ; 1448: 323-353, 2024.
Article in English | MEDLINE | ID: mdl-39117825

ABSTRACT

The cytokine storm syndrome (CSS) associated with systemic juvenile idiopathic arthritis (sJIA) has widely been referred to as macrophage activation syndrome (MAS). In this chapter, we use the term sJIA-associated CSS (sJIA-CSS) when referring to this syndrome and use the term MAS when referencing publications that specifically report on sJIA-associated MAS.


Subject(s)
Arthritis, Juvenile , Cytokine Release Syndrome , Humans , Arthritis, Juvenile/complications , Arthritis, Juvenile/immunology , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Macrophage Activation Syndrome/diagnosis , Macrophage Activation Syndrome/etiology , Cytokines/metabolism , Child
6.
J Clin Immunol ; 43(1): 101-108, 2023 01.
Article in English | MEDLINE | ID: mdl-36006569

ABSTRACT

Systemic juvenile idiopathic arthritis associated with interstitial lung disease (SJIA-LD) represents a highly morbid subset of SJIA for which effective therapies are lacking. We report the case of a patient with refractory SJIA-LD who underwent treatment with MAS-825, an investigational bispecific monoclonal antibody targeting IL-1ß and IL-18. MAS-825 treatment was associated with a marked reduction in total IL-18 and free IL-18 in both serum and bronchoalveolar lavage fluid (BAL). Baseline oxygen saturation, exercise tolerance, and quality of life metrics improved after treatment with MAS-825, while pulmonary function testing remained stable. Following treatment, the BAL showed no evidence of pulmonary alveolar proteinosis and inflammatory infiltrates were markedly reduced, reflected by decreased numbers of CD4 T-cells, CD8 T-cells, and macrophages. The patient was able to wean entirely off systemic corticosteroids and other biologics after 10 months of treatment with MAS-825 and experienced no side effects of the drug. This case demonstrates improvement in pulmonary symptoms, lung inflammation, and burden of immunomodulatory therapy after treatment with MAS-825 and suggests that simultaneous targeting of both IL-1ß and IL-18 may be a safe and effective treatment strategy in SJIA-LD.


Subject(s)
Arthritis, Juvenile , Lung Diseases, Interstitial , Macrophage Activation Syndrome , Humans , Interleukin-18/therapeutic use , Arthritis, Juvenile/complications , Arthritis, Juvenile/diagnosis , Arthritis, Juvenile/drug therapy , Quality of Life , Macrophage Activation Syndrome/diagnosis
7.
Ann Rheum Dis ; 82(10): 1271-1285, 2023 10.
Article in English | MEDLINE | ID: mdl-37487610

ABSTRACT

OBJECTIVE: Haemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS) are life-threatening systemic hyperinflammatory syndromes that can develop in most inflammatory contexts. They can progress rapidly, and early identification and management are critical for preventing organ failure and mortality. This effort aimed to develop evidence-based and consensus-based points to consider to assist clinicians in optimising decision-making in the early stages of diagnosis, treatment and monitoring of HLH/MAS. METHODS: A multinational, multidisciplinary task force of physician experts, including adult and paediatric rheumatologists, haematologist/oncologists, immunologists, infectious disease specialists, intensivists, allied healthcare professionals and patients/parents, formulated relevant research questions and conducted a systematic literature review (SLR). Delphi methodology, informed by SLR results and questionnaires of experts, was used to generate statements aimed at assisting early decision-making and optimising the initial care of patients with HLH/MAS. RESULTS: The task force developed 6 overarching statements and 24 specific points to consider relevant to early recognition of HLH/MAS, diagnostic approaches, initial management and monitoring of HLH/MAS. Major themes included the simultaneous need for prompt syndrome recognition, systematic evaluation of underlying contributors, early intervention targeting both hyperinflammation and likely contributors, careful monitoring for progression/complications and expert multidisciplinary assistance. CONCLUSION: These 2022 EULAR/American College of Rheumatology points to consider provide up-to-date guidance, based on the best available published data and expert opinion. They are meant to help guide the initial evaluation, management and monitoring of patients with HLH/MAS in order to halt disease progression and prevent life-threatening immunopathology.


Subject(s)
Lymphohistiocytosis, Hemophagocytic , Macrophage Activation Syndrome , Rheumatology , Child , Adult , Humans , United States , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/therapy , Lymphohistiocytosis, Hemophagocytic/etiology , Macrophage Activation Syndrome/diagnosis , Macrophage Activation Syndrome/etiology , Macrophage Activation Syndrome/therapy , Consensus
8.
Blood ; 137(18): 2450-2462, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33512449

ABSTRACT

Inborn errors of immunity (IEI) are a genetically heterogeneous group of disorders with a broad clinical spectrum. Identification of molecular and functional bases of these disorders is important for diagnosis, treatment, and an understanding of the human immune response. We identified 6 unrelated males with neutropenia, infections, lymphoproliferation, humoral immune defects, and in some cases bone marrow failure associated with 3 different variants in the X-linked gene TLR8, encoding the endosomal Toll-like receptor 8 (TLR8). Interestingly, 5 patients had somatic variants in TLR8 with <30% mosaicism, suggesting a dominant mechanism responsible for the clinical phenotype. Mosaicism was also detected in skin-derived fibroblasts in 3 patients, demonstrating that mutations were not limited to the hematopoietic compartment. All patients had refractory chronic neutropenia, and 3 patients underwent allogeneic hematopoietic cell transplantation. All variants conferred gain of function to TLR8 protein, and immune phenotyping demonstrated a proinflammatory phenotype with activated T cells and elevated serum cytokines associated with impaired B-cell maturation. Differentiation of myeloid cells from patient-derived induced pluripotent stem cells demonstrated increased responsiveness to TLR8. Together, these findings demonstrate that gain-of-function variants in TLR8 lead to a novel childhood-onset IEI with lymphoproliferation, neutropenia, infectious susceptibility, B- and T-cell defects, and in some cases, bone marrow failure. Somatic mosaicism is a prominent molecular mechanism of this new disease.


Subject(s)
Bone Marrow Failure Disorders/pathology , Gain of Function Mutation , Immunologic Deficiency Syndromes/pathology , Inflammation/pathology , Mosaicism , Pancytopenia/pathology , Toll-Like Receptor 8/genetics , Adolescent , Adult , B-Lymphocytes/pathology , Bone Marrow Failure Disorders/etiology , Bone Marrow Failure Disorders/metabolism , Cell Differentiation , Child , Child, Preschool , Cytokines/metabolism , Female , Follow-Up Studies , Humans , Immunologic Deficiency Syndromes/etiology , Immunologic Deficiency Syndromes/metabolism , Infant , Inflammation/etiology , Inflammation/metabolism , Lymphocyte Activation , Male , Pancytopenia/etiology , Pancytopenia/metabolism , Pedigree , Prognosis , T-Lymphocytes/immunology , Young Adult
9.
Blood ; 135(16): 1332-1343, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32107531

ABSTRACT

Hemophagocytic lymphohistiocytosis (HLH) is a syndrome describing patients with severe systemic hyperinflammation. Characteristic features include unremitting fever, cytopenias, hepatosplenomegaly, and elevation of typical HLH biomarkers. Patients can develop hepatitis, coagulopathy, liver failure, central nervous system involvement, multiorgan failure, and other manifestations. The syndrome has a high mortality rate. More and more, it is recognized that while HLH can be appropriately used as a broad summary diagnosis, many pediatric patients actually suffer from an expanding spectrum of genetic diseases that can be complicated by the syndrome of HLH. Classic genetic diseases in which HLH is a typical and common manifestation include pathogenic changes in familial HLH genes (PRF1, UNC13D, STXBP2, and STX11), several granule/pigment abnormality genes (RAB27A, LYST, and AP3B1), X-linked lymphoproliferative disease genes (SH2D1A and XIAP), and others such as NLRC4, CDC42, and the Epstein-Barr virus susceptibility diseases. There are many other genetic diseases in which HLH is an infrequent complication of the disorder as opposed to a prominent manifestation of the disease caused directly by the genetic defect, including other primary immune deficiencies and inborn errors of metabolism. HLH can also occur in patients with underlying rheumatologic or autoinflammatory disorders and is usually designated macrophage activation syndrome in those settings. Additionally, HLH can develop in patients during infections or malignancies without a known (or as-yet-identified) genetic predisposition. This article will attempt to summarize current concepts in the pediatric HLH field as well as offer a practical diagnostic and treatment overview.


Subject(s)
Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/therapy , Animals , CARD Signaling Adaptor Proteins/genetics , Calcium-Binding Proteins/genetics , Child , Disease Management , Epstein-Barr Virus Infections/complications , F-Box-WD Repeat-Containing Protein 7/genetics , Genetic Predisposition to Disease , Genetic Variation , Humans , Lymphohistiocytosis, Hemophagocytic/genetics , Lymphohistiocytosis, Hemophagocytic/physiopathology , Signaling Lymphocytic Activation Molecule Associated Protein/genetics , X-Linked Inhibitor of Apoptosis Protein/genetics
10.
Blood ; 136(19): 2162-2174, 2020 11 05.
Article in English | MEDLINE | ID: mdl-32589707

ABSTRACT

Hemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS) are life-threatening hyperinflammatory syndromes typically associated with underlying hematologic and rheumatic diseases, respectively. Familial HLH is associated with genetic cytotoxic impairment and thereby to excessive antigen presentation. Extreme elevation of serum interleukin-18 (IL-18) has been observed specifically in patients with MAS, making it a promising therapeutic target, but how IL-18 promotes hyperinflammation remains unknown. In an adjuvant-induced MAS model, excess IL-18 promoted immunopathology, whereas perforin deficiency had no effect. To determine the effects of excess IL-18 on virus-induced immunopathology, we infected Il18-transgenic (Il18tg) mice with lymphocytic choriomeningitis virus (LCMV; strain Armstrong). LCMV infection is self-limited in wild-type mice, but Prf1-/- mice develop prolonged viremia and fatal HLH. LCMV-infected Il18-transgenic (Il18tg) mice developed cachexia and hyperinflammation comparable to Prf1-/- mice, albeit with minimal mortality. Like Prf1-/- mice, immunopathology was largely rescued by CD8 depletion or interferon-γ (IFNg) blockade. Unlike Prf1-/- mice, they showed normal target cell killing and normal clearance of viral RNA and antigens. Rather than impairing cytotoxicity, excess IL-18 acted on T lymphocytes to amplify their inflammatory responses. Surprisingly, combined perforin deficiency and transgenic IL-18 production caused spontaneous hyperinflammation specifically characterized by CD8 T-cell expansion and improved by IFNg blockade. Even Il18tg;Prf1-haplosufficient mice demonstrated hyperinflammatory features. Thus, excess IL-18 promotes hyperinflammation via an autoinflammatory mechanism distinct from, and synergistic with, cytotoxic impairment. These data establish IL-18 as a potent, independent, and modifiable driver of life-threatening innate and adaptive hyperinflammation and support the rationale for an IL-18-driven subclass of hyperinflammation.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Inflammation/pathology , Intercellular Signaling Peptides and Proteins/physiology , Interleukin-18/metabolism , Lymphocytic Choriomeningitis/complications , Lymphocytic choriomeningitis virus/pathogenicity , Perforin/physiology , Animals , Female , Inflammation/etiology , Inflammation/metabolism , Interferon-gamma/metabolism , Interleukin-18/genetics , Lymphocyte Activation , Lymphocytic Choriomeningitis/virology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic
11.
Crit Care ; 26(1): 128, 2022 05 07.
Article in English | MEDLINE | ID: mdl-35526000

ABSTRACT

BACKGROUND: Thrombotic microangiopathy-induced thrombocytopenia-associated multiple organ failure and hyperinflammatory macrophage activation syndrome are important causes of late pediatric sepsis mortality that are often missed or have delayed diagnosis. The National Institutes of General Medical Science sepsis research working group recommendations call for application of new research approaches in extant clinical data sets to improve efficiency of early trials of new sepsis therapies. Our objective is to apply machine learning approaches to derive computable 24-h sepsis phenotypes to facilitate personalized enrollment in early anti-inflammatory trials targeting these conditions. METHODS: We applied consensus, k-means clustering analysis to our extant PHENOtyping sepsis-induced Multiple organ failure Study (PHENOMS) dataset of 404 children. 24-hour computable phenotypes are derived using 25 available bedside variables including C-reactive protein and ferritin. RESULTS: Four computable phenotypes (PedSep-A, B, C, and D) are derived. Compared to all other phenotypes, PedSep-A patients (n = 135; 2% mortality) were younger and previously healthy, with the lowest C-reactive protein and ferritin levels, the highest lymphocyte and platelet counts, highest heart rate, and lowest creatinine (p < 0.05); PedSep-B patients (n = 102; 12% mortality) were most likely to be intubated and had the lowest Glasgow Coma Scale Score (p < 0.05); PedSep-C patients (n = 110; mortality 10%) had the highest temperature and Glasgow Coma Scale Score, least pulmonary failure, and lowest lymphocyte counts (p < 0.05); and PedSep-D patients (n = 56, 34% mortality) had the highest creatinine and number of organ failures, including renal, hepatic, and hematologic organ failure, with the lowest platelet counts (p < 0.05). PedSep-D had the highest likelihood of developing thrombocytopenia-associated multiple organ failure (Adj OR 47.51 95% CI [18.83-136.83], p < 0.0001) and macrophage activation syndrome (Adj OR 38.63 95% CI [13.26-137.75], p < 0.0001). CONCLUSIONS: Four computable phenotypes are derived, with PedSep-D being optimal for enrollment in early personalized anti-inflammatory trials targeting thrombocytopenia-associated multiple organ failure and macrophage activation syndrome in pediatric sepsis. A computer tool for identification of individual patient membership ( www.pedsepsis.pitt.edu ) is provided. Reproducibility will be assessed at completion of two ongoing pediatric sepsis studies.


Subject(s)
Macrophage Activation Syndrome , Sepsis , Thrombocytopenia , Anti-Inflammatory Agents , C-Reactive Protein , Child , Clinical Trials as Topic , Creatinine , Ferritins , Humans , Machine Learning , Macrophage Activation Syndrome/complications , Multiple Organ Failure/etiology , Organ Dysfunction Scores , Phenotype , Reproducibility of Results
12.
Pediatr Crit Care Med ; 23(12): 968-979, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36178701

ABSTRACT

OBJECTIVES: Interest in using bedside C-reactive protein (CRP) and ferritin levels to identify patients with hyperinflammatory sepsis who might benefit from anti-inflammatory therapies has piqued with the COVID-19 pandemic experience. Our first objective was to identify patterns in CRP and ferritin trajectory among critically ill pediatric sepsis patients. We then examined the association between these different groups of patients in their inflammatory cytokine responses, systemic inflammation, and mortality risks. DATA SOURCES: A prospective, observational cohort study. STUDY SELECTION: Children with sepsis and organ failure in nine pediatric intensive care units in the United States. DATA EXTRACTION: Two hundred and fifty-five children were enrolled. Five distinct clinical multi-trajectory groups were identified. Plasma CRP (mg/dL), ferritin (ng/mL), and 31 cytokine levels were measured at two timepoints during sepsis (median Day 2 and Day 5). Group-based multi-trajectory models (GBMTM) identified groups of children with distinct patterns of CRP and ferritin. DATA SYNTHESIS: Group 1 had normal CRP and ferritin levels ( n = 8; 0% mortality); Group 2 had high CRP levels that became normal, with normal ferritin levels throughout ( n = 80; 5% mortality); Group 3 had high ferritin levels alone ( n = 16; 6% mortality); Group 4 had very high CRP levels, and high ferritin levels ( n = 121; 11% mortality); and Group 5 had very high CRP and very high ferritin levels ( n = 30; 40% mortality). Cytokine responses differed across the five groups, with ferritin levels correlated with macrophage inflammatory protein 1α levels and CRP levels reflective of many cytokines. CONCLUSIONS: Bedside CRP and ferritin levels can be used together to distinguish groups of children with sepsis who have different systemic inflammation cytokine responses and mortality risks. These data suggest future potential value in personalized clinical trials with specific targets for anti-inflammatory therapies.


Subject(s)
COVID-19 , Sepsis , Child , Humans , C-Reactive Protein/metabolism , Prospective Studies , Pandemics , Biomarkers , Ferritins , Inflammation , Cytokines/metabolism
13.
Am J Dermatopathol ; 44(6): e64-e66, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35120036

ABSTRACT

ABSTRACT: A 15-month-old full-term boy of African descent with an asymptomatic sickle cell trait presented with episodes of transient erythematous subcutaneous nodules involving the entire body except the face, since 2 weeks of age. The skin lesions evolved to areas of lipoatrophy and hyperpigmentation. An initial skin biopsy, studied at a different department at 2 months, was initially misinterpreted as subcutaneous fat necrosis of the newborn, despite the lack of the typical radiated crystals and needle-shaped clefts characterizing that entity. At 4 months of age, he developed systemic inflammatory manifestations, including fever, a new rash, significant periorbital edema, and failure to thrive. An extensive workup showed leukocytosis, hypercalcemia, elevated inflammatory markers, hypertriglyceridemia, and transaminitis. A new skin biopsy of the eyelid was diagnosed as neutrophilic lobular panniculitis with necrotic adipocytes. An initial whole-exome sequencing did not identify any causative mutations, but a WES reanalysis focused on autoinflammatory disorders was requested based on additional clinicopathologic data and revealed a mosaic intronic mutation in IKBKG c. 671+3 G > C. This mutation encodes an mRNA missing exon 5 resulting in NF-kB essential modulator (NEMO) Δ-exon 5-autoinflammatory syndrome (NDAS). NEMO-NDAS is one of the systemic autoinflammatory diseases that may appear as an unexplained panniculitis in young children, who should be monitored for immunodeficiency and/or autoinflammatory diseases. The differential diagnosis of autoinflammatory disorders should be considered in such cases incorporating the use of the whole-genome/exome sequencing in the investigation. The inhibitor of kappa-B kinase regulatory subunit gamma (IKBKG) is located on chromosome Xq28 and encodes the NEMO, a critical molecule upstream of NF-kB activation.


Subject(s)
Hereditary Autoinflammatory Diseases , Immunologic Deficiency Syndromes , Panniculitis , Child , Child, Preschool , Hereditary Autoinflammatory Diseases/diagnosis , Hereditary Autoinflammatory Diseases/genetics , Hereditary Autoinflammatory Diseases/pathology , Humans , I-kappa B Kinase/genetics , Immunologic Deficiency Syndromes/genetics , Infant , Infant, Newborn , Male , NF-kappa B , Panniculitis/genetics , Panniculitis/pathology , Skin/pathology
14.
Immunol Rev ; 281(1): 115-123, 2018 01.
Article in English | MEDLINE | ID: mdl-29247997

ABSTRACT

15 years ago, the fundamental biology of an inflammatory signaling complex eventually dubbed "the inflammasome" began to unravel in chronologic parallel with the discovery that many inflammatory diseases were associated with its hyperactivity. Though the genetic origins of Familial Mediterranean Fever (FMF, caused my mutations in MEFV) were discovered first, it would take nearly two decades before the mechanistic connections to a PYRIN inflammasome were made. In the interim, the intensive study of the NLRP3 inflammasome, and the diseases associated with its hyperactivation, have largely dictated the paradigm of inflammasome composition and function. Despite impressive gains, focusing on NLRP3 left gaps in our understanding of inflammasome biology. Foremost among these gaps were how inflammasomes become activated and the connections between inflammasome structure and function. Fortunately, work in another inflammasome inducer, NLRC4, grew to fill those gaps. The current understanding of the NLRC4 inflammasome is perhaps the most comprehensive illustration of the inflammasome paradigm: trigger (e.g. cytosolic flagellin), sensor (NAIP), nucleator (NLRC4), adaptor (ASC), and effector (CASP1). Detailed work has also identified observations that challenge this paradigm. Simultaneously, the features unique to each inflammasome offer a lesson in contrast, providing perspectives on inflammasome activation, regulation, and function. In this review, we endeavor to highlight recent breakthroughs related to NLRC4 inflammasome structure and activation, important in vivo work in infection and systemic inflammation, and the characterization of a spectrum of human NLRC4-associated autoinflammatory diseases.


Subject(s)
Autoimmune Diseases/metabolism , CARD Signaling Adaptor Proteins/metabolism , Calcium-Binding Proteins/metabolism , Familial Mediterranean Fever/genetics , Infections/metabolism , Inflammasomes/metabolism , Inflammation/metabolism , Pyrin/metabolism , Animals , Autoimmune Diseases/genetics , Humans , Pyrin/genetics , Signal Transduction
15.
J Clin Immunol ; 41(5): 987-991, 2021 07.
Article in English | MEDLINE | ID: mdl-33570715

ABSTRACT

Familial hemophagocytic lymphohistiocytosis (HLH) is a life-threatening hyperinflammatory syndrome resulting from defective cytotoxicity. A previously healthy 3-month-old female presented with fever, irritability, abdominal distention, and tachypnea. She ultimately met all eight HLH-2004 diagnostic criteria, accompanied by elevated CXCL9. Initial empiric anti-inflammatory treatment included anakinra and IVIg, which stabilized ferritin and cytopenias. She had molecular and genetic confirmation of perforin deficiency and was started on dexamethasone and etoposide per HLH-94. She clinically improved, though CXCL9 and sIL-2Ra remained elevated. She was readmitted at week 8 for relapsed HLH without clear trigger and HLH-94 induction therapy was reinitiated. Her systemic HLH symptoms failed to respond and she soon developed symptomatic CNS HLH. She was incidentally found to have multifocal lung and kidney nodules, which were sterile and consisted largely of histiocytes and activated, oligoclonal CD8 T cells. The patient had a laboratory response to salvage therapy with alemtuzumab and emapalumab, but progressive neurologic decline led to withdrawal of care. This report highlights HLH foci manifest as pulmonary/renal nodules, demonstrates the utility of monitoring an array of HLH biomarkers, and suggests possible benefit of earlier salvage therapy.


Subject(s)
Lymphohistiocytosis, Hemophagocytic/diagnosis , Alemtuzumab/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , Dexamethasone/therapeutic use , Etoposide/therapeutic use , Fatal Outcome , Female , Humans , Immunoglobulins, Intravenous/therapeutic use , Immunologic Factors/therapeutic use , Infant , Inflammation/diagnosis , Inflammation/drug therapy , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Lymphohistiocytosis, Hemophagocytic/drug therapy , Perforin/deficiency , Salvage Therapy
16.
J Allergy Clin Immunol ; 146(5): 949-959, 2020 11.
Article in English | MEDLINE | ID: mdl-33007328

ABSTRACT

Since the first textbook devoted to cytokine storm syndromes (CSSs) was published in 2019, the world has changed dramatically and the term's visibility has broadened. Herein, we define CSSs broadly to include life/organ-threatening systemic inflammation and immunopathology regardless of the context in which it occurs, recognizing that the indistinct borders of such a definition limit its utility. Nevertheless, we are focused on the pathomechanisms leading to CSSs, including impairment of granule-mediated cytotoxicity, specific viral infections, excess IL-18, and chimeric antigen receptor T-cell therapy. These mechanisms are often reflected in distinct clinical features, functional tests, and/or biomarker assessments. Moreover, these mechanisms often indicate specific, definitive treatments. This mechanism-focused organization is vital to both advancing the field and understanding the complexities in individual patients. However, increasing evidence suggests that these mechanisms interact and overlap. Likewise, the utility of a broad term such as "cytokine storm" is that it reflects a convergence on a systemic inflammatory phenotype that, regardless of cause or context, may be amenable to "inflammo-stabilization." CSS research must improve our appreciation of its various mechanisms and their interactions and treatments, but it must also identify the signs and interventions that may broadly prevent CSS-induced immunopathology.


Subject(s)
Cytokine Release Syndrome/therapy , Immunotherapy, Adoptive/adverse effects , Virus Diseases/immunology , Animals , Cytokine Release Syndrome/diagnosis , Cytokine Release Syndrome/etiology , Cytotoxicity, Immunologic , Humans , Inflammation , Interleukin-18/metabolism , Lymphohistiocytosis, Hemophagocytic , Macrophage Activation Syndrome , Virus Diseases/complications
17.
Clin Immunol ; 211: 108328, 2020 02.
Article in English | MEDLINE | ID: mdl-31870725

ABSTRACT

Autoinflammatory disorders are characterized by dysregulated innate immune response, resulting in recurrent uncontrolled systemic inflammation and fever. Gain-of-function mutations in NLRC4 have been described to cause a range of autoinflammatory disorders. We report a twelve-year-old Malay girl with recurrent fever, skin erythema, and inflammatory arthritis. Whole exome sequencing and subsequent bidirectional Sanger sequencing identified a heterozygous missense mutation in NLRC4 (NM_001199138: c.1970A > T). This variant was predicted to be damaging in silico, was absent in public and local databases and occurred in a highly conserved residue in the leucine-rich repeat (LRR) domain. Cytokine analysis showed extremely high serum IL-18 and IL-18/CXCL9 ratio, consistent with other NLRC4-MAS patients. In summary, we identified the first patient with a novel de novo heterozygous NLRC4 gene mutation contributing to autoinflammatory disease in Malaysia. Our findings reinforce the likely pathogenicity of specific LRR domain mutations in NLRC4 and expand the clinical spectrum of NLRC4 mutations.


Subject(s)
Autoimmune Diseases/genetics , CARD Signaling Adaptor Proteins/genetics , Calcium-Binding Proteins/genetics , Arthritis/genetics , Chemokine CXCL9/blood , Child , Erythema/blood , Female , Fever/genetics , Humans , Interleukin-18/blood , Mutation , Protein Domains , Syndrome
18.
Ann Rheum Dis ; 79(2): 225-231, 2020 02.
Article in English | MEDLINE | ID: mdl-31707357

ABSTRACT

OBJECTIVE: Macrophage activation syndrome (MAS) is a life-threatening complication of systemic juvenile idiopathic arthritis (sJIA) characterised by a vicious cycle of immune amplification that can culminate in overwhelming inflammation and multiorgan failure. The clinical features of MAS overlap with those of active sJIA, complicating early diagnosis and treatment. We evaluated adenosine deaminase 2 (ADA2), a protein of unknown function released principally by monocytes and macrophages, as a novel biomarker of MAS. METHODS: We established age-based normal ranges of peripheral blood ADA2 activity in 324 healthy children and adults. We compared these ranges with 173 children with inflammatory and immune-mediated diseases, including systemic and non-systemic JIA, Kawasaki disease, paediatric systemic lupus erythematosus and juvenile dermatomyositis. RESULTS: ADA2 elevation beyond the upper limit of normal in children was largely restricted to sJIA with concomitant MAS, a finding confirmed in a validation cohort of sJIA patients with inactive disease, active sJIA without MAS or sJIA with MAS. ADA2 activity strongly correlated with MAS biomarkers including ferritin, interleukin (IL)-18 and the interferon (IFN)-γ-inducible chemokine CXCL9 but displayed minimal association with the inflammatory markers C reactive protein and erythrocyte sedimentation rate. Correspondingly, ADA2 paralleled disease activity based on serial measurements in patients with recurrent MAS episodes. IL-18 and IFN-γ elicited ADA2 production by peripheral blood mononuclear cells, and ADA2 was abundant in MAS haemophagocytes. CONCLUSIONS: These findings collectively identify the utility of plasma ADA2 activity as a biomarker of MAS and lend further support to a pivotal role of macrophage activation in this condition.


Subject(s)
Adenosine Deaminase/blood , Arthritis, Juvenile/blood , Intercellular Signaling Peptides and Proteins/blood , Macrophage Activation Syndrome/diagnosis , Adolescent , Adult , Arthritis, Juvenile/complications , Biomarkers/blood , Blood Sedimentation , C-Reactive Protein/analysis , Chemokine CXCL9/blood , Child , Dermatomyositis/blood , Dermatomyositis/immunology , Female , Ferritins/blood , Humans , Interleukin-18/blood , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/immunology , Macrophage Activation Syndrome/immunology , Male , Mucocutaneous Lymph Node Syndrome/blood , Mucocutaneous Lymph Node Syndrome/immunology , Reference Values , Sensitivity and Specificity
19.
Rheumatology (Oxford) ; 59(2): 361-366, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31326996

ABSTRACT

OBJECTIVES: Systemic juvenile idiopathic arthritis (sJIA) is a childhood arthritis with features of autoinflammation and high risk of macrophage activation syndrome (MAS). IL-18 has been shown to have key roles in sJIA and MAS. We aimed to examine IL-18 levels in sJIA in relation to disease activity and history of MAS and other disease biomarkers namely S100 proteins and CXCL9. METHODS: Total IL-18, CXCL9 and S100 proteins levels were determined in 40 sJIA patients, and IL-18 levels were compared between patients with regards to disease activity, history of MAS, and other biomarkers. RESULTS: Total IL-18 levels were significantly higher in patients with active sJIA (median 16 499 pg/ml; interquartile range (IQR) 4816-61 839), and remained persistently elevated even in the majority of patients with inactive disease (1164 pg/ml; IQR 587-3444). Patients with history of MAS had significantly higher IL-18 levels (13 380 pg/ml; IQR 4212-62 628) as compared with those without MAS history (956.5 pg/ml; IQR 276.3-4262.5). Total IL-18 performed well with area under the curve of 0.8145 and 0.84 in predicting disease activity and history of MAS, respectively. We observed moderate correlation between IL-18 and CXCL9 (R = 0.56), S100A8/A9 (R = 0.47) and S100A12 (R = 0.46). The correlation was stronger for ferritin (R = 0.74) and overall for those with active disease. CONCLUSION: Total IL-18 levels were elevated in the majority of sJIA patients regardless of clinical features, but were higher in patients with active disease and history of MAS. Change in IL-18 may reflect increased disease activity or development of MAS.


Subject(s)
Arthritis, Juvenile/diagnosis , Interleukin-18/blood , Macrophage Activation Syndrome/diagnosis , Arthritis, Juvenile/blood , Biomarkers/blood , Chemokine CXCL9/blood , Female , Ferritins/blood , Humans , Macrophage Activation Syndrome/blood , Male , S100 Proteins/blood , Severity of Illness Index
20.
Blood ; 131(13): 1442-1455, 2018 03 29.
Article in English | MEDLINE | ID: mdl-29326099

ABSTRACT

Hemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS) are life-threatening hyperferritinemic systemic inflammatory disorders. Although profound cytotoxic impairment causes familial HLH (fHLH), the mechanisms driving non-fHLH and MAS are largely unknown. MAS occurs in patients with suspected rheumatic disease, but the mechanistic basis for its distinction is unclear. Recently, a syndrome of recurrent MAS with infantile enterocolitis caused by NLRC4 inflammasome hyperactivity highlighted the potential importance of interleukin-18 (IL-18). We tested this association in hyperferritinemic and autoinflammatory patients and found a dramatic correlation of MAS risk with chronic (sometimes lifelong) elevation of mature IL-18, particularly with IL-18 unbound by IL-18 binding protein, or free IL-18. In a mouse engineered to carry a disease-causing germ line NLRC4T337S mutation, we observed inflammasome-dependent, chronic IL-18 elevation. Surprisingly, this NLRC4T337S-induced systemic IL-18 elevation derived entirely from intestinal epithelia. NLRC4T337S intestines were histologically normal but showed increased epithelial turnover and upregulation of interferon-γ-induced genes. Assessing cellular and tissue expression, classical inflammasome components such as Il1b, Nlrp3, and Mefv predominated in neutrophils, whereas Nlrc4 and Il18 were distinctly epithelial. Demonstrating the importance of free IL-18, Il18 transgenic mice exhibited free IL-18 elevation and more severe experimental MAS. NLRC4T337S mice, whose free IL-18 levels were normal, did not. Thus, we describe a unique connection between MAS risk and chronic IL-18, identify epithelial inflammasome hyperactivity as a potential source, and demonstrate the pathogenicity of free IL-18. These data suggest an IL-18-driven pathway, complementary to the cytotoxic impairment of fHLH, with potential as a distinguishing biomarker and therapeutic target in MAS.


Subject(s)
Interleukin-18/immunology , Macrophage Activation Syndrome/immunology , Signal Transduction/immunology , Amino Acid Substitution , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/immunology , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/immunology , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/immunology , Humans , Inflammasomes/genetics , Inflammasomes/immunology , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/immunology , Interleukin-18/genetics , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Lymphohistiocytosis, Hemophagocytic/genetics , Lymphohistiocytosis, Hemophagocytic/immunology , Lymphohistiocytosis, Hemophagocytic/pathology , Macrophage Activation Syndrome/genetics , Macrophage Activation Syndrome/pathology , Mice , Mice, Knockout , Mutation, Missense , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Pyrin/genetics , Pyrin/immunology , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL