Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Immunity ; 45(1): 145-58, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27421703

ABSTRACT

Fibroproliferative diseases are driven by dysregulated tissue repair responses and are a major cause of morbidity and mortality because they affect nearly every organ system. Type 2 cytokine responses are critically involved in tissue repair; however, the mechanisms that regulate beneficial regeneration versus pathological fibrosis are not well understood. Here, we have shown that the type 2 effector cytokine interleukin-13 simultaneously, yet independently, directed hepatic fibrosis and the compensatory proliferation of hepatocytes and biliary cells in progressive models of liver disease induced by interleukin-13 overexpression or after infection with Schistosoma mansoni. Using transgenic mice with interleukin-13 signaling genetically disrupted in hepatocytes, cholangiocytes, or resident tissue fibroblasts, we have revealed direct and distinct roles for interleukin-13 in fibrosis, steatosis, cholestasis, and ductular reaction. Together, these studies show that these mechanisms are simultaneously controlled but distinctly regulated by interleukin-13 signaling. Thus, it may be possible to promote interleukin-13-dependent hepatobiliary expansion without generating pathological fibrosis. VIDEO ABSTRACT.


Subject(s)
Fatty Liver/immunology , Fibroblasts/immunology , Interleukin-13/metabolism , Liver Cirrhosis, Biliary/immunology , Liver/pathology , Schistosoma mansoni/immunology , Schistosomiasis mansoni/immunology , Animals , Bile Acids and Salts/biosynthesis , Cell Proliferation , Cells, Cultured , Fibrosis , Humans , Interleukin-13/genetics , Interleukin-13/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction , Th2 Cells/immunology
2.
Sci Rep ; 7: 41416, 2017 02 20.
Article in English | MEDLINE | ID: mdl-28216675

ABSTRACT

Tumor stroma-secreted growth factors, cytokines, and reactive oxygen species (ROS) influence tumor development from early stages to the metastasis phase. Previous studies have demonstrated downregulation of ROS-producing extracellular superoxide dismutase (SOD3) in thyroid cancer cell lines although according to recent data, the expression of SOD3 at physiological levels stimulates normal and cancer cell proliferation. Therefore, to analyze the expression of SOD3 in tumor stroma, we characterized stromal cells from the thyroid. We report mutually exclusive desmoplasia and inflammation in papillary and follicular thyroid cancers and the presence of multipotent mesenchymal stem/stromal cells (MSCs) in non-carcinogenic thyroids and papillary thyroid cancer (PTC). The phenotypic and differentiation characteristics of Thyroid MSCs and PTC MSCs were comparable with bone marrow MSCs. A molecular level analysis showed increased FIBROBLAST ACTIVATING PROTEIN, COLLAGEN 1 TYPE A1, TENASCIN, and SOD3 expression in PTC MSCs compared to Thyroid MSCs, suggesting the presence of MSCs with a fibrotic fingerprint in papillary thyroid cancer tumors and the autocrine-paracrine conversion of SOD3 expression, which was enhanced by cancer cells. Stromal SOD3 had a stimulatory effect on cancer cell growth and an inhibitory effect on cancer cell migration, thus indicating that SOD3 might be a novel player in thyroid tumor stroma.


Subject(s)
Carcinoma, Papillary/enzymology , Carcinoma, Papillary/pathology , Cell Movement , Extracellular Space/enzymology , Mesenchymal Stem Cells/pathology , Superoxide Dismutase/metabolism , Thyroid Neoplasms/enzymology , Thyroid Neoplasms/pathology , Adenocarcinoma, Follicular/enzymology , Adenocarcinoma, Follicular/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Papillary/genetics , Cell Proliferation , Epithelial Cells/metabolism , Epithelial Cells/pathology , Fibrosis , Gene Expression Regulation, Neoplastic , Humans , Paracrine Communication , Phenotype , Thyroid Cancer, Papillary , Thyroid Gland/pathology , Thyroid Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL