Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Phys Rev Lett ; 132(3): 030201, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38307054

ABSTRACT

Sequential weak measurements allow for the direct extraction of individual density-matrix elements, rather than relying on global reconstruction of the entire density matrix, which opens a new avenue for the characterization of quantum systems. Nevertheless, extending the sequential scheme to multiqudit quantum systems is challenging due to the requirement of multiple coupling processes for each qudit and the lack of appropriate precision evaluation. To address these issues, we propose a resource-efficient scheme (RES) that directly characterizes the density matrix of general multiqudit systems while optimizing measurements and establishing a feasible estimation analysis. In the RES, an efficient observable of the quantum system is constructed such that a single meter state coupled to each qudit is sufficient to extract the corresponding density-matrix element. An appropriate model based on the statistical distribution of errors is utilized to evaluate the precision and feasibility of the scheme. We have experimentally applied the RES to the direct characterization of general single-photon qutrit states and two-photon entangled states. The results show that the RES outperforms sequential schemes in terms of efficiency and precision in both weak- and strong-coupling scenarios. This Letter sheds new light on the practical characterization of large-scale quantum systems and the investigation of their nonclassical properties.

2.
J Chem Phys ; 160(9)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38450732

ABSTRACT

One of the primary hurdles in microdevice fabrication lies in ascertaining the most impactful tactics for adapting metal surfaces. Through a one-pot tackle and distinct mechanochemical reactions evoked by 15 min aqueous wet sand-milling (SM-15), we successfully grafted Mo-based metal-organic frameworks (Mo-MOFs) onto graphene oxides (GOs). Following this, a convenient and readily scalable methodology of electrophoretic deposition was implemented to create controllable thickness of SM-15 GOs@Mo-MOFs lubricating films, achieving considerable enhancements of 143% and 91% in hardness and Young's modulus, respectively, when compared to those of SM-15 Mo-MOFs. The successful synthesis of SM-15 GOs@Mo-MOFs was corroborated using strategies such as x-ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. Analyses using the micro-tribotester indicated that the new film exhibited a lowest friction coefficient of roughly 0.5 when imposed with a load of 5 N and sliding speed of 8 mm/s. In addition, the optical profiler nano-indentation in situ scanning probe microscope revealed that SM-15 GOs@Mo-MOFs films had smaller and shallower scratches and grooves compared to SM-15 Mo-MOFs ones. The calculated results of key descriptors (EHOMO, ELUMO, ΔE, etc.) in density functional theory quantitatively disclosed the interaction mechanisms between GOs@Mo-MOFs molecules and microdevices. We first scrutinized the innate properties of molecule adsorption energy and frictional mechanical behaviors using synergetic cross-scale simulations, such as Monte Carlo and finite element methods. The expectation was that this process would motivate a valuable technique for shielding in the thriving micromanufacturing.

3.
J Stroke Cerebrovasc Dis ; : 107945, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39214435

ABSTRACT

BACKGROUND: Early evaluation and intervention for post-stroke cognitive impairment are crucial for improving the prognosis of acute ischemic stroke. The search for specific diagnostic markers and feasible therapeutic targets is extremely urgent.The characteristics of circular RNAs make them promising candidates. AIMS: To screen circular RNAs as novel biomarkers and therapeutic targets for post-stroke cognitive impairment in large-artery atherosclerosis anterior circulation cerebral infarction patients. METHODS: In this prospective observational study, patients with first-ever large-artery atherosclerosis anterior circulation cerebral infarction were recruited. The Montreal Cognitive Assessment was used to assess the cognitive statuses of patients. Venous blood samples were collected on the seventh day after stroke onset. A circRNA microarray was used to identify differentially expressed circular RNAs in the discovery cohort (four patients with post-stroke cognitive impairment and four patients with post-stroke cognitive normal characteristics), and validation was performed in the validation cohorts (45 patients with post-stroke cognitive impairment and 30 patients with post-stroke cognitive normal characteristics) using quantitative real-time polymerase chain reaction. Receiver operating characteristic curves of the validated circular RNAs and the NIHSS score were constructed, and the area under the curve, sensitivity, and specificity were calculated. Correlation analysis was performed to explore the relationship between the copy number of circular RNAs and the cognitive status. The functions of the differentially expressed circular RNAs were predicted using bioinformatics analysis. RESULTS: CircRNA microarray analysis revealed 189 human circular RNAs (152 upregulated and 37 downregulated) that were differentially expressed in the plasma samples of patients with post-stroke cognitive impairment and PSCN characteristics. The expression of hsa_circ_0089763, hsa_circ_0064644, and hsa_circ_0089762 was validated using quantitative real-time polymerase chain reaction. The area under the curve, sensitivity, and specificity of hsa_circ_0089762 in post-stroke cognitive impairment diagnosis were 0.993, 97.8%, and 96.7%, respectively, and the correlation coefficient between hsa_circ_0089762 expression and the Montreal Cognitive Assessment score was -0.693 (p < 0.001), which made it an ideal biomarker. Bioinformatic analysis revealed that the targeted mRNAs of the three circular RNAs were enriched in pathologically related signaling pathways of post-stroke cognitive impairment, such as the MAPK and PI3K-Akt signaling pathways. Based on the circRNA-miRNA-mRNA network, the three circular RNAs play a crucial role in numerous pathological processes of acute ischemic stroke and post-stroke cognitive impairment by sponging miRNAs such as MiR-335, MiR-424, and MiR-670. By building the protein-protein interaction network, we identified cluster 1 according to the MCODE score; cluster 1 was composed of ERBB4, FGFR1, CACNA2D1, NRG1, PPP2R5E, CACNB4, CACNB2, CCND1, NTRK2, and PTCH. CONCLUSION: Hsa_circ_0089762, hsa_circ_0064644, and hsa_circ_0089763 are potential novel biomarkers and focal points for exploring intervention targets in post-stroke cognitive impairment of large-artery atherosclerosis anterior circulation cerebral infarction patients. REGISTRATION NUMBER: ChiCTR2000035074.

4.
Aquac Nutr ; 2023: 1741724, 2023.
Article in English | MEDLINE | ID: mdl-36860970

ABSTRACT

A 10-week trial was performed to investigate the effects of replacing fishmeal with cottonseed meal (CSM) on the growth rate, protein metabolism, and antioxidant response of Asian red-tailed catfish Hemibagrus wyckioides. Five isonitrogenous and isocaloric diets (C0, C8.5, C17.2, C25.7, and C34.4) were prepared to contain 0%, 8.5%, 17.2%, 25.7%, and 34.4% CSM replacing fishmeal, respectively. The weight gain, daily growth coefficient, pepsin, and intestinal amylase activities initially increased and then decreased with the raising dietary CSM levels; the highest values were observed in the C17.2 group (P < 0.05). However, feed cost exhibited the opposite trend. With the increasing dietary CSM levels, the protein efficiency ratio and intestinal trypsin activity decreased but feed conversion rate increased gradually; while no differences were observed among the C0, C8.5, and C17.2 groups (P > 0.05). Dietary CSM inclusion regardless of levels increased the plasma growth hormone level as well as hepatic aspartate aminotransferase (AST) and γ-glutamyl transpeptidase activities but decreased the plasma glutamate dehydrogenase and AST activities (P < 0.05). With the increasing dietary CSM levels, the plasma alkaline phosphatase (AKP) and hepatic superoxide dismutase activities decreased but malondialdehyde content increased gradually, while no differences were observed among the C0, C8.5, and C17.2 groups (P > 0.05). The plasma immunoglobulin M content and hepatic glutathione reductase activity initially increased but then decreased with the raising dietary CSM levels; the highest values were found in the C17.2 group. These results indicated that dietary CSM inclusion level up to 17.2% improved the growth rate, feed cost, digestive enzyme activity, and protein metabolism without compromising antioxidant capacity of H. wyckioide, whereas these parameters were depressed by further inclusion of CSM. CSM is a potentially cost-effective alternative plant protein source in diet of H. wyckioide.

5.
Psychogeriatrics ; 21(3): 342-349, 2021 May.
Article in English | MEDLINE | ID: mdl-33641231

ABSTRACT

BACKGROUND: The aim of this study was to investigate the association between insulin resistance (IR) and vascular cognitive impairment (VCI) in patients with cerebral small vessel disease (CSVD). METHODS: A total of 275 CSVD patients were enrolled in this retrospective case-control study. The homeostatic model assessment of insulin resistance (HOMA-IR) was used to measure the index of insulin resistance. Cognitive function was assessed using the Montreal Cognitive Assessment (MoCA). Spearman's correlation coefficient was used to evaluate the correlation between HOMA-IR and MoCA score. The variance inflation factor (VIF) was used to detect collinearity between variables. Multivariate logistic regression analysis was employed to confirm whether HOMA-IR is an independent risk factor for VCI in CVSD. Finally, receiver operating characteristic (ROC) curve analysis was conducted to assess the diagnostic value of HOMA-IR in VCI. RESULTS: Of the 275 patients, 164 displayed VCI. VCI patients showed a significantly higher level of HOMA-IR compared to non-VCI patients (P < 0.001). HOMA-IR was negatively correlated with the MoCA score (r = -0.593, P < 0.001). After adjusting for potential confounding variables, using HOMA-IR quartile 1 (<1.11) as the reference, HOMA-IR quartile 3 (1.71-2.50) and quartile 4 (≥2.50) were independently associated with the occurrence of VCI; for each one unit increase in the HOMA-IR, the risk of VCI increased by 177.3% (odds ratio 2.773, 95% confidence interval: 1.050-7.324, P = 0.040) and 444.3% (odds ratio 5.443, 95% confidence interval: 2.109-14.050, P < 0.001), respectively. According to the ROC curve, the optimal cut-off point of HOMA-IR in predicting VCI was 1.55, and the area under the curve was 0.744, with a sensitivity of 71.3% and a specificity of 69.4%. CONCLUSION: This study demonstrated that increased IR is significantly associated with VCI in CSVD patients.


Subject(s)
Cerebral Small Vessel Diseases , Cognitive Dysfunction , Insulin Resistance , Case-Control Studies , Cerebral Small Vessel Diseases/complications , China/epidemiology , Cognitive Dysfunction/diagnosis , Humans , Retrospective Studies
6.
J Cell Mol Med ; 22(1): 395-408, 2018 01.
Article in English | MEDLINE | ID: mdl-28945004

ABSTRACT

Toll-like receptors (TLRs) are essential immunoreceptors involved in host defence against invading microbes. Recent studies indicate that certain TLRs activate immunological autophagy to eliminate microbes. It remains unknown whether TLRs regulate autophagy to play a role in the heart. This study examined this question. The activation of TLR3 in cultured cardiomyocytes was observed to increase protein levels of autophagic components, including LC3-II, a specific marker for autophagy induction, and p62/SQSTM1, an autophagy receptor normally degraded in the final step of autophagy. The results of transfection with a tandem mRFP-GFP-LC3 adenovirus and use of an autophagic flux inhibitor chloroquine both suggested that TLR3 in cardiomyocytes promotes autophagy induction without affecting autophagic flux. Gene-knockdown experiments showed that the TRIF-dependent pathway mediated the autophagic effect of TLR3. In the mouse model of chronic myocardial infarction, persistent autophagy was observed, concomitant with up-regulated TLR3 expression and increased TLR3-Trif signalling. Germline knockout (KO) of TLR3 inhibited autophagy, reduced infarct size, attenuated heart failure and improved survival. These protective effects were abolished by in vivo administration of an autophagy inducer rapamycin. Similar to the results obtained in cultured cardiomyocytes, TLR3-KO did not prevent autophagic flux in mouse heart. Additionally, this study failed to detect the involvement of inflammation in TLR3-KO-derived protection, as wild-type and TLR3-KO hearts were comparable in inflammatory activity. It is concluded that up-regulated TLR3 expression and signalling contributes to persistent autophagy following MI, which promotes heart failure and lethality.


Subject(s)
Autophagy , Heart Failure/etiology , Heart Failure/metabolism , Myocardial Infarction/complications , Toll-Like Receptor 3/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Autophagy/drug effects , Cells, Cultured , Cytokines/metabolism , Heart Failure/pathology , Mice, Knockout , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocytes, Cardiac/ultrastructure , Poly I-C/pharmacology , Rats, Sprague-Dawley , Toll-Like Receptor 3/agonists
7.
J Neuroinflammation ; 15(1): 252, 2018 Sep 04.
Article in English | MEDLINE | ID: mdl-30180864

ABSTRACT

BACKGROUND: Depression is one of the most common mental disorders characterized mainly by low mood and loss of interest or pleasure. About a third of patients with depression do not respond to classic antidepressant treatments. Recent evidence suggests that Mrp8/14 (myeloid-related protein 8/14) plays a crucial role in cognitive dysfunction and neuroinflammatory diseases, yet its role in mood regulation remains largely uninvestigated. In the present work, we explored the potential role of Mrp8/14 in the progression of depression. METHODS: After 4 weeks of chronic unpredictable mild stress (CUMS), depressive-like symptoms and Mrp8/14 were determined. To verify the effects of Mrp8/14 on depressive-like behaviors, the inhibitor TAK-242 and recombinant Mrp8/14 were used. Furthermore, the molecular mechanisms in Mrp8/14-induced behavioral and biological changes were examined in vivo and ex vivo. RESULTS: Four-week CUMS contributed to the development of depressive symptoms. Mrp8 and Mrp14 were upregulated in the hippocampus and serum after exposure to CUMS. Pharmacological inhibition of Mrp14 attenuated CUMS-induced TLR4/NF-κB signaling activation and depressive-like behaviors. Furthermore, central administration of recombinant Mrp8, Mrp14, and Mrp8/14 resulted in neuroinflammation and depressive-like behaviors. Mrp8/14-provoked proinflammatory effects and depressive-like behaviors were improved by pretreatment with a TLR4 inhibitor. Moreover, pharmacological inhibition of TLR4 reduced the release of nitric oxide and reactive oxygen species in Mrp8/14-activated BV2 microglia. CONCLUSIONS: These data suggest that the hippocampal Mrp8/14-TLR4-mediated neuroinflammation contributes to the development of depressive-like behaviors. Targeting the Mrp8/14 may be a novel promising antidepressant approach.


Subject(s)
Calgranulin A/metabolism , Calgranulin B/metabolism , Depression/pathology , Gene Expression Regulation/physiology , Hippocampus/metabolism , Animals , Calgranulin A/antagonists & inhibitors , Cell Line, Transformed , Cytokines/metabolism , Depression/drug therapy , Depression/etiology , Disease Models, Animal , Food Preferences/drug effects , Gene Expression Regulation/drug effects , Hippocampus/drug effects , Immunosuppressive Agents/pharmacology , Male , Mice , Mice, Inbred BALB C , Microglia/drug effects , Microglia/metabolism , Quinolines/pharmacology , Reactive Oxygen Species/metabolism , Stress, Psychological/complications , Sucrose/administration & dosage , Sulfonamides/pharmacology
8.
BMC Cardiovasc Disord ; 18(1): 72, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29703160

ABSTRACT

BACKGROUND: Smooth muscle cells play an important role in the development of atherosclerosis. SHP2 is known to regulate the proliferation and migration of smooth muscle cells. The purpose of this study was to determine whether the SHP2 inhibitor PHPS1 has a pro-atherosclerotic or an atheroprotective effect in vivo and in vitro. METHODS: After exposure to a high-cholesterol diet for 4 weeks, LDL receptor-deficient (Ldlr-/-) mice were exposed to the SHP2 inhibitor PHPS1 or vehicle. Body weight, serum glucose and lipid levels were determined. The size and composition of atherosclerotic plaques were measured by en face analysis, Movat staining and immunohistochemistry. The phosphorylation of SHP2 and related signaling molecules was analyzed by Western blot. Mechanistic analyses were performed in oxLDL-stimulated cultured vascular smooth muscle cells (VSMCs) with or without 10 mM PHPS1 pretreatment. Protein phosphorylation levels were detected by Western blot, and VSMC proliferation was assessed by BrdU staining. RESULTS: PHPS1 decreased the number of atherosclerotic plaques without significantly affecting body weight, serum glucose levels or lipid metabolism. Plaque composition analysis showed a significant decrease in the number of VSMCs in atherosclerotic lesions of Ldlr-/- mice treated with PHPS1. Stimulation with oxLDL induced a dose-dependent increase in the number of VSMCs and in SHP2 and ERK phosphorylation levels, and these effects were blocked by PHPS1. CONCLUSION: The SHP2 inhibitor PHPS1 exerts a protective effect against atherosclerosis by reducing VSMC proliferation via SHP2/ERK pathway activation.


Subject(s)
Aortic Diseases/prevention & control , Atherosclerosis/prevention & control , Benzenesulfonates/pharmacology , Cell Proliferation/drug effects , Enzyme Inhibitors/pharmacology , Hydrazones/pharmacology , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Animals , Aorta/drug effects , Aorta/enzymology , Aorta/pathology , Aortic Diseases/enzymology , Aortic Diseases/genetics , Aortic Diseases/pathology , Atherosclerosis/enzymology , Atherosclerosis/genetics , Atherosclerosis/pathology , Cells, Cultured , Diet, High-Fat , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/metabolism , Mice, Knockout , Muscle, Smooth, Vascular/enzymology , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/enzymology , Myocytes, Smooth Muscle/pathology , Phosphorylation , Plaque, Atherosclerotic , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Receptors, LDL/deficiency , Receptors, LDL/genetics , Signal Transduction/drug effects
9.
Biochem Biophys Res Commun ; 483(2): 810-815, 2017 02 05.
Article in English | MEDLINE | ID: mdl-28013046

ABSTRACT

We investigated the role of tumour necrosis factor receptor (TNFR)-associated death domain (TRADD) on pressure overload-induced cardiac hypertrophy and the underlying molecular mechanisms by using a TRADD deficiency mice model. 6-8 weeks wild-type and TRADD knockout mice were performed to transverse aorta constriction (TAC) or sham operation (6-8 mice for each group). 14 days after TAC, cardiac function was measured by echocardiography, as well as by pathological and molecular analyses of heart samples. The expressions of cardiac hypertrophic and fibrotic markers were detected by qPCR. Phosphorylated and total TAK1, Akt, and p38 MAPK levels were examined by Western blotting. The ratios of lung or heart/body weight, wall thickness/chamber diameter of left ventricular and cross area of cardiomyocyte were significantly reduced in TRADD knockout (KO) mice than those of wild-type mice after TAC. Moreover, cardiac hypertrophic and fibrotic markers were downregulated in TRADD knockout mice than those of wild-type mice following TAC. Protein expression analysis showed phosphorylated TAK1, p38 MAPK and AKT were upregulated after TAC in both wild-type and TRADD KO mice, phosphorylation of TAK1 and p38 MAPK was reduced more remarkably after TRADD deficiency, while phosphorylated AKT expression was similar between TRADD KO and wild-type mice following TAC. Our data suggest that TRADD KO blunts pressure overload-induced cardiac hypertrophy through mediating TAK1/p38 MAPK but not AKT phosphorylation in mice.


Subject(s)
Cardiomegaly/etiology , MAP Kinase Kinase Kinases/metabolism , TNF Receptor-Associated Death Domain Protein/deficiency , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Blood Pressure/physiology , Cardiomegaly/pathology , Cardiomegaly/physiopathology , Disease Models, Animal , MAP Kinase Signaling System , Male , Mice , Mice, Knockout , Proto-Oncogene Proteins c-akt/metabolism , TNF Receptor-Associated Death Domain Protein/genetics , TNF Receptor-Associated Death Domain Protein/metabolism , Ventricular Remodeling/physiology
10.
J Neuroinflammation ; 14(1): 210, 2017 Oct 30.
Article in English | MEDLINE | ID: mdl-29084550

ABSTRACT

BACKGROUND: Abundant reports indicated that depression was often comorbid with type 2 diabetes and even metabolic syndrome. Considering they might share common biological origins, it was tentatively attributed to the chronic cytokine-mediated inflammatory response which was induced by dysregulation of HPA axis and overactivation of innate immunity. However, the exact mechanisms remain obscure. Herein, we mainly focused on the function of the NLRP3 inflammasome to investigate this issue. METHODS: Male C57BL/6 mice were subjected to 12 weeks of chronic unpredictable mild stress (CUMS), some of which were injected with glyburide or fluoxetine. After CUMS procedure, behavioral and metabolic tests were carried out. In order to evaluate the systemic inflammation associated with inflammasome activation, IL-1ß and inflammasome components in hippocampi and pancreases, as well as corticosterone and IL-1ß in serum were detected separately. Moreover, immunostaining was performed to assess morphologic characteristics of pancreases. RESULTS: In the present study, we found that 12 weeks' chronic stress resulted in depressive-like behavior comorbid with insulin resistance. Furthermore, antidiabetic drug glyburide, an inhibitor of the NLRP3 inflammasome, was discovered to be effective in preventing the experimental comorbidity. In brief, it improved behavioral performance, ameliorated insulin intolerance as well as insulin signaling in the hippocampus possibly through inhibiting NLRP3 inflammasome activation by suppressing the expression of TXNIP. CONCLUSIONS: All these evidence supported our hypothesis that chronic stress led to comorbidity of depressive-like behavior and insulin resistance via long-term mild inflammation. More importantly, based on the beneficial effects of blocking the activation of the NLRP3 inflammasome, we provided a potential therapeutic target for clinical comorbidity and a new strategy for management of both diabetes and depression.


Subject(s)
Depressive Disorder/drug therapy , Depressive Disorder/metabolism , Glyburide/therapeutic use , Hypoglycemic Agents/therapeutic use , Insulin Resistance/physiology , Animals , Comorbidity , Depressive Disorder/psychology , Male , Mice , Mice, Inbred C57BL
11.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(9): 946-957, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28579235

ABSTRACT

AIMS: To investigate whether haematopoietic TLR4 deletion attenuates perivascular brown adipose tissue inflammation in atherosclerotic mice. METHODS AND RESULTS: Experiments were performed using irradiated LDL receptor-deficient (LDLR-/-) mice with marrow from either TLR4-deficient (TLR4-/-) or age-matched wild-type (WT) mice. After 12 weeks of being fed a high-cholesterol diet, TLR4-/-→LDLR-/- mice developed fewer atherosclerotic lesions in the aorta compared to WT→LDLR-/- mice. This effect was associated with an increase in multilocular lipid droplets and mitochondria in perivascular adipose tissue (PVAT). Immunofluorescence analysis confirmed that there was an increase in capillary density and M2 macrophage infiltration, accompanied by a decrease in tumour necrosis factor (TNF)-α expression in the localized PVAT of TLR4-/-→LDLR-/- mice. In vitro studies indicated that bone marrow-derived macrophages (BMDMs) from WT mice demonstrated an M1-like phenotype and expression of inflammatory cytokines induced by palmitate. These effects were attenuated in BMDMs isolated from TLR4-/- mice. Furthermore, brown adipocytes incubated with conditioned medium (CM) derived from palmitate-treated BMDMs, exhibited larger and more unilocular lipid droplets, and reduced expression of brown adipocyte-specific markers and perilipin-1 compared to those observed in brown adipocytes exposed to CM from palmitate-treated BMDMs of TLR4-/- mice. This decreased potency was primarily due to TNF-α, as demonstrated by the capacity of the TNF-α neutralizing antibody to reverse these effects. CONCLUSIONS: These results suggest that haematopoietic-specific deletion of TLR4 promotes PVAT homeostasis, which is involved in reducing macrophage-induced TNF-α secretion and increasing mitochondrial biogenesis in brown adipocytes.


Subject(s)
Adipose Tissue, Brown/metabolism , Atherosclerosis/metabolism , Inflammation/metabolism , Toll-Like Receptor 4/metabolism , Animals , Biomarkers/metabolism , Bone Marrow/metabolism , Lipid Droplets/metabolism , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Perilipin-1/metabolism , Receptors, LDL/metabolism , Tumor Necrosis Factor-alpha/metabolism
12.
Sheng Li Xue Bao ; 69(5): 715-722, 2017 Oct 25.
Article in Zh | MEDLINE | ID: mdl-29063119

ABSTRACT

Depression is a major class of mental illness; owing to its high prevalence, high disability rate and heavy disease burden, it has become a stern and formidable global health problem. It is generally believed that the etiology of depression is multifactorial, which is related to gender differences, chronic stress, dietary behavior and drug abuse. At present, the exact pathophysiological mechanism of depression still remains unclear, but researchers across the globe put forward various hypotheses to interpret the possible access to this disease, including monoamine neurotransmitter disturbance, hypothalamic-pituitary-adrenal (HPA) axis dysfunction, lack of neurotrophic factors and excessive pro-inflammatory cytokines. Based on the latest research evidence and the objective fact that traditional antidepressants may be ineffective in some particular patients, the "cytokine theory" tends to attract more and more attention recently. To date, researches on the role of cytokines in the pathogenesis of depression mainly focus on pro-inflammatory cytokines, especially categories including tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and interleukin-6 (IL-6). With the proceeding of researches from all over the world, a variety of novel molecules and mechanisms were postulated. This paper summarized a large amount of in vitro and in vivo research evidence, in order to review the current progress of the researches on pathophysiology of depression from the perspective of pro-inflammatory cytokines. Since the response rate of antidepressant therapy during present medical practice is unsatisfying, we suggest a new feasible diagnosis and treatment strategy, that is to distinguish the inflammatory status of patients with depression and take anti-inflammatory treatment into consideration. Totally, this novel strategy aims at modulating the conventional clinical protocol for treatment-resistant depressive patients and overcoming the limitation of insufficient antidepressant response possibly resulted from inflammation.


Subject(s)
Depression/etiology , Inflammation/complications , Animals , Antidepressive Agents/therapeutic use , Cytokines/physiology , Depression/diagnosis , Depression/drug therapy , Depression/immunology , Humans , Interleukin-6/physiology
13.
Lipids Health Dis ; 15: 98, 2016 May 26.
Article in English | MEDLINE | ID: mdl-27228976

ABSTRACT

BACKGROUND: Current study was designed to investigate the effects of obstructive sleep apnea (OSA) combined dyslipidemia on the prevalence of atherosclerotic cardiovascular diseases (ASCVD). METHODS: This was a cross-sectional study and subjects with documented dyslipidemia and without previous diagnosis of OSA were enrolled. Polysomnography was applied to evaluate apnea-hypopnea index (AHI). Based on AHI value, subjects were classified into four groups: without OSA, mild, moderate and severe OSA groups. Clinical characteristics and laboratory examination data were recorded. Relationship between AHI event and lipid profiles was analyzed, and logistic regression analysis was used to evaluate the effects of OSA combined dyslipidemia on ASCVD prevalence. RESULTS: Totally 248 subjects with dyslipidemia were enrolled. Compared to the other 3 groups, subjects with severe OSA were older, male predominant and had higher smoking rate. In addition, subjects with severe OSA had higher body mass index, waist-hip ratio, blood pressure, and higher rates of overweight and obesity. Serum levels of fasting plasma glucose, glycated hemoglobin, LDL-C and CRP were all significantly higher. ASCVD prevalence was considerably higher in subjects with severe OSA. AHI event in the severe OSA group was up to 35.4 ± 5.1 events per hour which was significantly higher than the other groups (P < 0.05 for trend). Pearson correlation analysis showed that only LDL-C was positively correlated with AHI events (r = 0.685, P < 0.05). Logistic regression analysis revealed that in unadjusted model, compared to dyslipidemia plus no-OSA group (reference group), OSA enhanced ASCVD risk in subjects with dyslipidemia, regardless of OSA severity. After extensively adjusted for confounding variables, the odds of dyslipidemia plus mild-OSA was reduced to insignificance. While the effects of moderate- and severe-OSA on promoting ASCVD risk in subjects with dyslipidemia remained significant, with severe-OSA most prominent (odds ratio: 1.52, 95% confidence interval: 1.13-2.02). CONCLUSION: OSA combined dyslipidemia conferred additive adverse effects on cardiovascular system, with severe-OSA most prominent.


Subject(s)
Atherosclerosis/epidemiology , Dyslipidemias/complications , Sleep Apnea, Obstructive/complications , Aged , Atherosclerosis/etiology , Atherosclerosis/physiopathology , Cross-Sectional Studies , Dyslipidemias/epidemiology , Dyslipidemias/physiopathology , Female , Humans , Male , Middle Aged , Risk Factors , Sleep Apnea Syndromes/physiopathology , Sleep Apnea, Obstructive/epidemiology , Sleep Apnea, Obstructive/physiopathology
14.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(9): 2766-73, 2016 Sep.
Article in Zh | MEDLINE | ID: mdl-30084592

ABSTRACT

The objective of the research was to study the correlations between near infrared spectra and molecular structures of 20 standard amino acids. It was to establish the theoretical foundation for widely use of the amino acids near infrared spectra in animal science, food and medicine. Measurement of the near infrared spectra was performed using a Shimadzu Fourier transform infrared spectrophotometer IRPrestige-21, with FlexIRTM Near-Infrared Fiber Optics module. The spectrometric data acquisitions were performed by Shimadzu IRsolution 1.50 system. The spectrometric room temperature was 25 ℃ and humidity was 38%. Spectra of 20 amino acid standard substances were collected by reflectance mode from 1 000 to 2 502 nm in 8 cm-1 increment. Each sample was scanned in three times, each scan was 50 cycles, and the average value of three times scan result was used for each sample. Based on the differences of amino acids side chains, the correlations between near infrared spectra and molecular structures were compared in the fat family amino acids, aromatic amino acids and heterocycle amino acids. The result shows that all 20 standard amino acids have very specific absorption line patterns. It is distinctly different in these absorption line patterns. Near-infrared spectra of high molecular weight fat family amino acids are affected by side chains. Near-infrared spectra of glycine are affected by carboxyl and amino. The differences of near-infrared spectra between two aromatic amino acids are in benzene ring. ­OH groups on benzene ring of tyrosine lower the symmetry of benzene molecule. It leads to the emergence of more vibration absorption. Near-infrared spectra of heterocycle amino acids are distinctly different in 1 000~2 502 nm because of side chains. In conclusion, there are four different characteristic spectral regions. The first one is 1 050~1 200 nm spectral region which is composed mainly of second-order frequency doubling of C­H group. The second is 1 300~1 500 nm spectral region which is composed mainly of combination tune of C­H group. Due to side chains of amino acid have different molecular structure, they yield a complete set of near infrared fingerprint spectra between 1 600~1 850 and 2 000~2 502 nm. In another words, these four characteristic regions of near infrared spectra can be used to build the model of qualitative analysis and quantitative analysis for amino acid, and improves the accuracy and reliability of model.

15.
J Cell Mol Med ; 19(12): 2728-40, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26290459

ABSTRACT

It remains unclear whether and how cardiomyocytes contribute to the inflammation in chronic heart failure (CHF). We recently reviewed the capacity of cardiomyocytes to initiate inflammation, by means of expressing certain immune receptors such as toll-like receptors (TLRs) that respond to pathogen- and damage-associated molecular patterns (PAMP and DAMP). Previous studies observed TLR4-mediated inflammation within days of myocardial infarction (MI). This study examined TLR4 expression and function in cardiomyocytes of failing hearts after 4 weeks of MI in rats. The increases of TLR4 mRNA and proteins, as well as inflammatory cytokine production, were observed in both the infarct and remote myocardium. Enhanced immunostaining for TLR4 was observed in cardiomyocytes but not infiltrating leucocytes. The injection of lentivirus shRNA against TLR4 into the infarcted heart decreased inflammatory cytokine production and improved heart function in vivo. Accordingly, in cardiomyocytes isolated from CHF hearts, increases of TLR4 mRNA and proteins were detected. More robust binding of TLR4 with lipopolysaccharide (LPS), a PAMP ligand for TLR4, and heat shock protein 60 (HSP60), a DAMP ligand for TLR4, was observed in CHF cardiomyocytes under a confocal microscope. The maximum binding capacity (Bmax ) of TLR4 was increased for LPS and HSP60, whereas the binding affinity (Kd) was not significantly changed. Furthermore, both LPS and HSP60 induced more robust production of inflammatory cytokines in CHF cardiomyocytes, which was reduced by TLR4-blocking antibodies. We conclude that the expression, ligand-binding capacity and pro-inflammatory function of cardiomyocyte TLR4 are up-regulated after long-term MI, which promote inflammation and exacerbate heart failure.


Subject(s)
Heart Failure/metabolism , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Toll-Like Receptor 4/metabolism , Up-Regulation , Animals , Blotting, Western , Cells, Cultured , Chaperonin 60/metabolism , Chronic Disease , Heart Failure/genetics , Inflammation/genetics , Inflammation/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Lipopolysaccharides/metabolism , Male , Microscopy, Confocal , Mitochondrial Proteins/metabolism , Myocardial Infarction/genetics , Myocardium/metabolism , Myocardium/pathology , Protein Binding , RNA Interference , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Toll-Like Receptor 4/genetics , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
17.
J Thorac Dis ; 16(4): 2443-2459, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38738236

ABSTRACT

Background: Myocardial infarction (MI) is one of the most lethal cardiovascular diseases. The loss of cardiomyocytes and the degradation of the extracellular matrix leads to high ventricular wall stress, which further drives the pathological thinning of the ventricular wall during MI. Injecting biomaterials to thicken the infarct ventricular wall provides mechanical support, thereby inhibiting the continued expansion of the heart. As an injectable biomaterial, alginate hydrogel has achieved exciting results in clinical trials, but further research needs to be conducted to determine whether it can improve cardiac function in addition to providing mechanical support. This study sought to explore these mechanisms in an animal model of MI. Methods: A MI model was established in male C57BL/6J mice by ligation of the proximal left anterior descending (LAD) coronary artery. Intramyocardial injections (hydrogel or saline group) were performed in the proximal wall regions bordering the infarct area (with one 20-µL injection). Four weeks after MI, RNA sequencing revealed that 342 messenger RNAs (mRNAs) from the infarcted hearts were differentially expressed between the saline group and hydrogel group. We subsequently conducted a Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis to analyze the RNA sequencing data. In addition, we employed both western blotting and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) techniques to verify a number of genes that were differentially expressed and could potentially affect cardiac function after MI. Subsequently, we confirmed these findings through in vitro experiments. Results: We found that compared with hydrogel treatment group, 250 mRNAs were upregulated and 92 mRNAs were downregulated in saline group (P<0.05). And by exploring the GO and KEGG signaling pathways as well as the protein-protein interaction (PPI) network, we found that administration of alginate hydrogel modulated cardiomyocyte inflammation-associated proteins as well as chemokine-related proteins during the inflammatory response phase after MI. In addition, our analysis at both the protein and RNA level revealed that B2M was effective in improving cardiac function after MI in the hydrogel treatment group, which was consistent in the myocardium oxygen and glucose deprivation (OGD) injury model. Conclusions: We explored the transcriptome changes of infarcted hearts after alginate-hydrogel injection during the inflammatory response period. Our findings suggest that the injectable hydrogel directly alters the inflammatory response and the chemokine-mediated signaling pathway of cardiomyocytes, ultimately improving cardiac function.

18.
Mol Neurobiol ; 61(9): 6312-6327, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38296899

ABSTRACT

Heat stroke (HS) is a severe medical condition characterized by a systemic inflammatory response that may precipitate multi-organ dysfunction, with a particular predilection for inducing profound central nervous system impairments. We aim to employ bioinformatics techniques for the retrieval and analysis of genes associated with heat stroke-induced neurological damage. We performed a comprehensive analysis of the GSE64778 dataset from the Sequence Read Archive, resulting in the identification of 1178 significantly differentially expressed genes (DEGs). We retrieved 2914 genes associated with heat stroke from the GeneCards database and 2377 genes associated with heat stroke from the Comparative Toxicogenomics Database (CTD). The intersection of the top 300 DEGs in the GSE64778 dataset intersected with the search results of GeneCards and CTD, yielding 25 final candidates for DEGs associated with heat stroke. Gene Ontology functional annotation results indicated that the target genes were mainly involved in apoptosis, stress response, and negative regulation of cellular processes and function in processes such as protein dimerization and protein binding. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed a predominant enrichment of candidate target genes within the PI3K-AKT signaling pathway. Subsequent protein-protein interaction network analysis highlighted HSP90aa1 as a central gene, indicating its pivotal role by possessing the highest number of edges among the genes enriched in the PI3K-AKT signaling pathway. Quantitative reverse transcription-polymerase chain reaction analysis performed on blood samples from patients validated the expression of Hsp90aa1 in individuals exhibiting early neurological damage in HS, consistent with the findings from the mRNA bioinformatics analysis. Additionally, the bioinformatics analysis of the upstream microRNAs (miRNAs) regulating HSP90aa1 and the target miRNAs associated with candidate long non-coding RNAs (lncRNAs) identified three lncRNAs, eight miRNAs, and one mRNA in the regulatory network. The DIANA Tools database and algorithms were employed for pathway enrichment and correlation analysis, revealing a significant association between LOC102547734 and MIR-206-3p, with the latter being identified as a target binding site Moreover, the analysis unveiled a correlation between MIR-206-3p and HSP90aa1, implicating the latter as a potential target binding site within the regulatory network.


Subject(s)
Gene Ontology , Heat Stroke , Heat Stroke/genetics , Humans , Protein Interaction Maps/genetics , HSP90 Heat-Shock Proteins/genetics , Gene Regulatory Networks , Gene Expression Profiling , Databases, Genetic , Computational Biology/methods , Genetic Association Studies , Signal Transduction/genetics , Reproducibility of Results
19.
Water Res ; 258: 121655, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38762914

ABSTRACT

Ammonia recovery from wastewater is of great significance for aquatic ecology safety, human health and carbon emissions reduction. Electrochemical methods have gained increasing attention since the authigenic base and acid of electrochemical systems can be used as stripper and absorbent for transmembrane chemisorption of ammonia, respectively. However, the separation of electrodes and gas permeable membrane (GPM) significantly restricts the ammonia transfer-transformation process and the authigenic acid-base utilization. To break the restrictions, this study developed a gas permeable membrane electrode assembly (GPMEA), which innovatively integrated anode and cathode on each side of GPM through easy phase inversion of polyvinylidene fluoride binder, respectively. With the GPMEA assembled in a stacked transmembrane electro-chemisorption (sTMECS) system, in situ utilization of authigenic acid and base for transmembrane electro-chemisorption of ammonia was achieved to enhance the ammonia recovery from wastewater. At current density of 60 A/m2, the transmembrane ammonia flux of the GPMEA was 693.0 ± 15.0 g N/(m2·d), which was 86 % and 28 % higher than those of separate GPM and membrane cathode, respectively. The specific energy consumption of the GPMEA was 9.7∼16.1 kWh/kg N, which were about 50 % and 25 % lower than that of separate GPM and membrane cathode, respectively. Moreover, the application of GPMEA in the ammonia recovery from wastewater is easy to scale up in the sTMECS system. Accordingly, with the features of excellent performance, energy saving and easy scale-up, the GPMEA showed good prospects in electrochemical ammonia recovery from wastewater.


Subject(s)
Ammonia , Electrodes , Wastewater , Ammonia/chemistry , Wastewater/chemistry , Membranes, Artificial , Waste Disposal, Fluid/methods , Electrochemical Techniques , Water Pollutants, Chemical/chemistry
20.
Water Res ; 257: 121708, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38723355

ABSTRACT

The ammonia recovery from wastewater via electrochemical technologies represents a promising way for wastewater treatment, resource recovery, and carbon emissions reduction. However, chemicals consumption and reactors scalability of the existing electrochemical systems have become the key challenges for their development and application. In this study, a stacked transmembrane electro-chemisorption (sTMECS) system was developed to utilize authigenic acid and base on site for enhancing ammonia recovery from wastewater. The easily scaled up system was achieved via innovatively connecting the cathode chamber in a unit with the anode chamber in the adjacent unit by a hydrophobic gas permeable membrane (GPM). Thus, authigenic base at cathodes and authigenic acid at anodes could be utilized as stripper and absorbent on site to enhance the transmembrane chemisorption of ammonia. Continuous power supply, reducing the distances of electrodes to GPM and moderate aeration of the catholyte could promote ammonia recovery. Applied to the ammonia recovery from the simulated urine, the sTMECS under the current density 62.5 A/cm2 with a catholyte aeration rate of 3.2 L/(L⋅min) for operation time 4 h showed the transmembrane ammonia flux of 26.00 g N/(m2·h) and the system energy consumption of 10.5 kWh/kg N. Accordingly, the developed sTMECS system with chemicals saving, easy scale-up and excellent performance shows good prospects in recovering ammonia from wastewater.


Subject(s)
Ammonia , Hydrophobic and Hydrophilic Interactions , Wastewater , Wastewater/chemistry , Membranes, Artificial , Waste Disposal, Fluid/methods , Electrodes , Electrochemical Techniques , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL