Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Bioorg Chem ; 145: 107227, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387400

ABSTRACT

Multidrug-resistant (MDR) pathogens are severely impacting our ability to successfully treat common infections. Here we report the synthesis of a panel of adarotene-related retinoids showing potent antimicrobial activity on Staphylococcus aureus strains (including multidrug-resistant ones). Fluorescence and molecular dynamic studies confirmed that the adarotene analogues were able to induce conformational changes and disfunctions to the cell membrane, perturbing the permeability of the phospholipid bilayer. Since the major obstacle for developing retinoids is their potential cytotoxicity, a selected candidate was further investigated to evaluate its activity on a panel of human cell lines. The compound was found to be well tolerated, with IC50 5-15-fold higher than the MIC on S. aureus strains. Furthermore, the adarotene analogue had a good pharmacokinetic profile, reaching a plasma concentration of about 6 µM after 0.5 h after administration (150 mg/kg), at least twice the MIC observed against various bacterial strains. Moreover, it was demonstrated that the compound potentiated the growth-inhibitory effect of the poorly bioavailable rifaximin, when used in combination. Overall, the collected data pave the way for the development of synthetic retinoids as potential therapeutics for hard-to-treat infectious diseases caused by antibiotic-resistant Gram-positive pathogens.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus , Anti-Bacterial Agents , Retinoids/pharmacology , Staphylococcal Infections/drug therapy , Microbial Sensitivity Tests
2.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38673985

ABSTRACT

Antimicrobial resistance is a silent pandemic harming human health, and Pseudomonas aeruginosa is the most common bacterium responsible for chronic pulmonary and eye infections. Antimicrobial peptides (AMPs) represent promising alternatives to conventional antibiotics. In this review, the in vitro/in vivo activities of the frog skin-derived AMP Esc(1-21) are shown. Esc(1-21) rapidly kills both the planktonic and sessile forms of P. aeruginosa and stimulates migration of epithelial cells, likely favoring repair of damaged tissue. However, to undertake preclinical studies, some drawbacks of AMPs (cytotoxicity, poor biostability, and limited delivery to the target site) must be overcome. For this purpose, the stereochemistry of two amino acids of Esc(1-21) was changed to obtain the diastereomer Esc(1-21)-1c, which is more stable, less cytotoxic, and more efficient in treating P. aeruginosa-induced lung and cornea infections in mouse models. Incorporation of these peptides (Esc peptides) into nanoparticles or immobilization to a medical device (contact lens) was revealed to be an effective strategy to ameliorate and/or to prolong the peptides' antimicrobial efficacy. Overall, these data make Esc peptides encouraging candidates for novel multifunctional drugs to treat lung pathology especially in patients with cystic fibrosis and eye dysfunctions, characterized by both tissue injury and bacterial infection.


Subject(s)
Pseudomonas Infections , Pseudomonas aeruginosa , Animals , Pseudomonas aeruginosa/drug effects , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Humans , Anura , Skin/microbiology , Skin/drug effects , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/therapeutic use , Antimicrobial Cationic Peptides/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/chemistry
3.
Cell Mol Life Sci ; 79(1): 67, 2021 Dec 31.
Article in English | MEDLINE | ID: mdl-34971429

ABSTRACT

Mutations in the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein lead to persistent lung bacterial infections, mainly due to Pseudomonas aeruginosa, causing loss of respiratory function and finally death of people affected by CF. Unfortunately, even in the era of CFTR modulation therapies, management of pulmonary infections in CF remains highly challenging especially for patients with advanced stages of lung disease. Recently, we identified antimicrobial peptides (AMPs), namely Esc peptides, with potent antipseudomonal activity. In this study, by means of electrophysiological techniques and computational studies we discovered their ability to increase the CFTR-controlled ion currents, by direct interaction with the F508del-CFTR mutant. Remarkably, this property was not explored previously with any AMPs or peptides in general. More interestingly, in contrast with clinically used CFTR modulators, Esc peptides would give particular benefit to CF patients by combining their capability to eradicate lung infections and to act as promoters of airway wound repair with their ability to ameliorate the activity of the channel with conductance defects. Overall, our findings not only highlighted Esc peptides as the first characterized AMPs with a novel property, that is the potentiator activity of CFTR, but also paved the avenue to investigate the functions of AMPs and/or other peptide molecules, for a new up-and-coming pharmacological approach to address CF lung disease.


Subject(s)
Antimicrobial Peptides/metabolism , Antimicrobial Peptides/pharmacology , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Lung Diseases/drug therapy , Pseudomonas Infections/drug therapy , Animals , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bicarbonates/metabolism , Chlorides/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis/microbiology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Humans , Ion Transport/drug effects , Lung Diseases/microbiology , Lung Diseases/pathology , Pseudomonas Infections/pathology , Pseudomonas aeruginosa/pathogenicity , Rats , Rats, Inbred F344
4.
Int J Mol Sci ; 24(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36613707

ABSTRACT

Many antibiotics are ineffective in killing Gram-negative bacteria due to the permeability barrier of the outer-membrane LPS. Infections caused by multi-drug-resistant Gram-negative pathogens require new antibiotics, which are often difficult to develop. Antibiotic potentiators disrupt outer-membrane LPS and can assist the entry of large-scaffold antibiotics to the bacterial targets. In this work, we designed a backbone-cyclized ultra-short, six-amino-acid-long (WKRKRY) peptide, termed cWY6 from LPS binding motif of ß-boomerang bactericidal peptides. The cWY6 peptide does not exhibit any antimicrobial activity; however, it is able to permeabilize the LPS outer membrane. Our results demonstrate the antibiotic potentiator activity in the designed cWY6 peptide for several conventional antibiotics (vancomycin, rifampicin, erythromycin, novobiocin and azithromycin). Remarkably, the short cWY6 peptide exhibits wound-healing activity in in vitro assays. NMR, computational docking and biophysical studies describe the atomic-resolution structure of the peptide in complex with LPS and mode of action in disrupting the outer membrane. The dual activities of cWY6 peptide hold high promise for further translation to therapeutics.


Subject(s)
Anti-Bacterial Agents , Lipopolysaccharides , Lipopolysaccharides/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Azithromycin/pharmacology , Rifampin/pharmacology , Microbial Sensitivity Tests , Gram-Negative Bacteria
5.
Int J Mol Sci ; 22(2)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33429882

ABSTRACT

Persistent infections, such as those provoked by the Gram-negative bacterium Pseudomonas aeruginosa in the lungs of cystic fibrosis (CF) patients, can induce inflammation with lung tissue damage and progressive alteration of respiratory function. Therefore, compounds having both antimicrobial and immunomodulatory activities are certainly of great advantage in fighting infectious diseases and chronic inflammation. We recently demonstrated the potent antipseudomonal efficacy of the antimicrobial peptide (AMP) Esc(1-21) and its diastereomer Esc(1-21)-1c, namely Esc peptides. Here, we confirmed this antimicrobial activity by reporting on the peptides' ability to kill P. aeruginosa once internalized into alveolar epithelial cells. Furthermore, by means of enzyme-linked immunosorbent assay and Western blot analyses, we investigated the peptides' ability to detoxify the bacterial lipopolysaccharide (LPS) by studying their effects on the secretion of the pro-inflammatory cytokine IL-6 as well as on the expression of cyclooxygenase-2 from macrophages activated by P. aeruginosa LPS. In addition, by a modified scratch assay we showed that both AMPs are able to stimulate the closure of a gap produced in alveolar epithelial cells when cell migration is inhibited by concentrations of Pseudomonas LPS that mimic lung infection conditions, suggesting a peptide-induced airway wound repair. Overall, these results have highlighted the two Esc peptides as valuable candidates for the development of new multifunctional therapeutics for treatment of chronic infectious disease and inflammation, as found in CF patients.


Subject(s)
Communicable Diseases/drug therapy , Cystic Fibrosis/drug therapy , Inflammation/drug therapy , Pore Forming Cytotoxic Proteins/pharmacology , Cell Line , Chronic Disease/prevention & control , Communicable Diseases/microbiology , Communicable Diseases/pathology , Cyclooxygenase 2/genetics , Cystic Fibrosis/microbiology , Cystic Fibrosis/pathology , Defensins/pharmacology , Gene Expression Regulation/drug effects , Humans , Immunologic Factors/pharmacology , Inflammation/microbiology , Inflammation/pathology , Interleukin-6/genetics , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/chemistry , Lung/drug effects , Lung/microbiology , Pore Forming Cytotoxic Proteins/chemistry , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/pathogenicity , Stereoisomerism , Wound Healing/drug effects , Wound Healing/genetics
6.
J Antimicrob Chemother ; 75(9): 2564-2572, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32514531

ABSTRACT

BACKGROUND: Colistin is a last-resort treatment option for many MDR Gram-negative bacteria. The covalent addition of l-aminoarabinose to the lipid A moiety of LPS is the main colistin resistance mechanism in the human pathogen Pseudomonas aeruginosa. OBJECTIVES: Identification (by in silico screening of a chemical library) of potential inhibitors of ArnT, which catalyses the last committed step of lipid A aminoarabinosylation, and their validation in vitro as colistin adjuvants. METHODS: The available ArnT crystal structure was used for a docking-based virtual screening of an in-house library of natural products. The resulting putative ArnT inhibitors were tested in growth inhibition assays using a reference colistin-resistant P. aeruginosa strain. The most promising compound was further characterized for its range of activity, specificity and cytotoxicity. Additionally, the effect of the compound on lipid A aminoarabinosylation was verified by MS analyses of lipid A. RESULTS: A putative ArnT inhibitor (BBN149) was discovered by molecular docking and demonstrated to specifically potentiate colistin activity in colistin-resistant P. aeruginosa isolates, without relevant effect on colistin-susceptible strains. BBN149 also showed adjuvant activity against colistin-resistant Klebsiella pneumoniae and low toxicity to bronchial epithelial cells. Lipid A aminoarabinosylation was reduced in BBN149-treated cells, although only partially. CONCLUSIONS: This study demonstrates that in silico screening targeting ArnT can successfully identify inhibitors of colistin resistance and provides a promising lead compound for the development of colistin adjuvants for the treatment of MDR bacterial infections.


Subject(s)
Colistin , Drug Resistance, Multiple, Bacterial , Anti-Bacterial Agents/pharmacology , Aryl Hydrocarbon Receptor Nuclear Translocator , Colistin/pharmacology , Humans , Microbial Sensitivity Tests , Molecular Docking Simulation , Pseudomonas aeruginosa
7.
J Org Chem ; 85(16): 10891-10901, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32806095

ABSTRACT

Colistin is a last-resort antibiotic for the treatment of multidrug resistant Gram-negative bacterial infections. Recently, a natural ent-beyerene diterpene was identified as a promising inhibitor of the enzyme responsible for colistin resistance mediated by lipid A aminoarabinosylation in Gram-negative bacteria, namely, ArnT (undecaprenyl phosphate-alpha-4-amino-4-deoxy-l-arabinose arabinosyl transferase). Here, semisynthetic analogues of hit were designed, synthetized, and tested against colistin-resistant Pseudomonas aeruginosa strains including clinical isolates to exploit the versatility of the diterpene scaffold. Microbiological assays coupled with molecular modeling indicated that for a more efficient colistin adjuvant activity, likely resulting from inhibition of the ArnT activity by the selected compounds and therefore from their interaction with the catalytic site of ArnT, an ent-beyerane scaffold is required along with an oxalate-like group at C-18/C-19 or a sugar residue at C-19 to resemble L-Ara4N. The ent-beyerane skeleton is identified for the first time as a privileged scaffold for further cost-effective development of valuable colistin resistance inhibitors.


Subject(s)
Colistin , Diterpenes , Anti-Bacterial Agents/pharmacology , Bacterial Proteins , Diterpenes/pharmacology , Drug Resistance, Bacterial , Microbial Sensitivity Tests , Pseudomonas aeruginosa
8.
J Enzyme Inhib Med Chem ; 35(1): 1751-1764, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32957844

ABSTRACT

The rapid development of antimicrobial resistance is pushing the search in the discovering of novel antimicrobial molecules to prevent and treat bacterial infections. Self-assembling antimicrobial peptides, as the lipidated peptides, are a novel and promising class of molecules capable of meeting this need. Based on previous work on Temporin L analogs, several new molecules lipidated at the N- or and the C-terminus were synthesised. Our goal is to improve membrane interactions through finely tuning self-assembly to reduce oligomerisation in aqueous solution and enhance self-assembly in bacterial membranes while reducing toxicity against human cells. The results here reported show that the length of the aliphatic moiety is a key factor to control target cell specificity and the oligomeric state of peptides either in aqueous solution or in a membrane-mimicking environment. The results of this study pave the way for the design of novel molecules with enhanced activities.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Klebsiella pneumoniae/drug effects , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Cationic Peptides/chemistry , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Molecular Structure , Proteolysis/drug effects , Sheep , Structure-Activity Relationship
9.
Int J Mol Sci ; 21(24)2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33321906

ABSTRACT

Bacterial biofilms are a serious threat for human health, and the Gram-positive bacterium Staphylococcus aureus is one of the microorganisms that can easily switch from a planktonic to a sessile lifestyle, providing protection from a large variety of adverse environmental conditions. Dormant non-dividing cells with low metabolic activity, named persisters, are tolerant to antibiotic treatment and are the principal cause of recalcitrant and resistant infections, including skin infections. Antimicrobial peptides (AMPs) hold promise as new anti-infective agents to treat such infections. Here for the first time, we investigated the activity of the frog-skin AMP temporin G (TG) against preformed S. aureus biofilm including persisters, as well as its efficacy in combination with tobramycin, in inhibiting S. aureus growth. TG was found to provoke ~50 to 100% reduction of biofilm viability in the concentration range from 12.5 to 100 µM vs ATCC and clinical isolates and to be active against persister cells (about 70-80% killing at 50-100 µM). Notably, sub-inhibitory concentrations of TG in combination with tobramycin were able to significantly reduce S. aureus growth, potentiating the antibiotic power. No critical cytotoxicity was detected when TG was tested in vitro up to 100 µM against human keratinocytes, confirming its safety profile for the development of a new potential anti-infective drug, especially for treatment of bacterial skin infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Biofilms/drug effects , Staphylococcus aureus/drug effects , Drug Synergism , Tobramycin/pharmacology
10.
Molecules ; 25(16)2020 Aug 09.
Article in English | MEDLINE | ID: mdl-32784887

ABSTRACT

Antibiotic resistance is now considered a worldwide problem that puts public health at risk. The onset of bacterial strains resistant to conventional antibiotics and the scarcity of new drugs have prompted scientific research to re-evaluate natural products as molecules with high biological and chemical potential. A class of natural compounds of significant importance is represented by alkaloids derived from higher plants. In this review, we have collected data obtained from various research groups on the antimicrobial activities of these alkaloids against conventional antibiotic-resistant strains. In addition, the structure-function relationship was described and commented on, highlighting the high potential of alkaloids as antimicrobials.


Subject(s)
Alkaloids/pharmacology , Anti-Bacterial Agents/pharmacology , Biological Products/pharmacology , Drug Resistance, Microbial/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Plant Extracts/pharmacology , Staphylococcal Infections/drug therapy , Humans , Staphylococcal Infections/microbiology
11.
Biomacromolecules ; 20(5): 1876-1888, 2019 05 13.
Article in English | MEDLINE | ID: mdl-31013061

ABSTRACT

Due to their excellent in vitro activity against multidrug resistant bacteria, antimicrobial peptides (AMPs) hold promise for treatment of Pseudomonas aeruginosa lung infections in cystic fibrosis (CF) sufferers. In this work, poly(lactide- co-glycolide) (PLGA) nanoparticles for lung delivery of AMPs deriving from the frog-skin esculentin-1a, namely, Esc(1-21) and Esc(1-21)-1c (Esc peptides), were successfully developed. Improved peptide transport through artificial CF mucus and simulated bacterial extracellular matrix was achieved in vitro. The formulations were effectively delivered through a liquid jet nebulizer already available to patients. Notably, Esc peptide-loaded nanoparticles displayed an improved efficacy in inhibiting P. aeruginosa growth in vitro and in vivo in the long term. A single intratracheal administration of Esc peptide-loaded nanoparticles in a mouse model of P. aeruginosa lung infection resulted in a 3-log reduction of pulmonary bacterial burden up to 36 h. Overall, results unravel the potential of PLGA nanoparticles as a reliable delivery system of AMPs to lungs.


Subject(s)
Amphibian Proteins/administration & dosage , Anti-Bacterial Agents/administration & dosage , Antimicrobial Cationic Peptides/administration & dosage , Nanoparticles/chemistry , Pneumonia/drug therapy , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Amphibian Proteins/pharmacology , Amphibian Proteins/therapeutic use , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/therapeutic use , Female , Mice , Mice, Inbred C57BL , Nanoparticles/adverse effects , Polylactic Acid-Polyglycolic Acid Copolymer/adverse effects , Pseudomonas aeruginosa/drug effects , Respiratory Mucosa/drug effects
12.
Biochim Biophys Acta Biomembr ; 1859(12): 2327-2339, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28912103

ABSTRACT

Antimicrobial peptides (AMPs) represent new alternatives to cope with the increasing number of multi-drug resistant microbial infections. Recently, a derivative of the frog-skin AMP esculentin-1a, Esc(1-21), was found to rapidly kill both the planktonic and biofilm forms of the Gram-negative bacterium Pseudomonas aeruginosa with a membrane-perturbing activity as a plausible mode of action. Lately, its diastereomer Esc(1-21)-1c containing two d-amino acids i.e. DLeu14 and DSer17 revealed to be less cytotoxic, more stable to proteolytic degradation and more efficient in eradicating Pseudomonas biofilm. When tested in vitro against the free-living form of this pathogen, it displayed potent bactericidal activity, but this was weaker than that of the all-l peptide. To investigate the reason accounting for this difference, mechanistic studies were performed on Pseudomonas spheroplasts and anionic or zwitterionic membranes, mimicking the composition of microbial and mammalian membranes, respectively. Furthermore, structural studies by means of optical and nuclear magnetic resonance spectroscopies were carried out. Our results suggest that the different extent in the bactericidal activity between the two isomers is principally due to differences in their interaction with the bacterial cell wall components. Indeed, the lower ability in binding and perturbing anionic phospholipid bilayers for Esc(1-21)-1c contributes only in a small part to this difference, while the final effect of membrane thinning once the peptide is inserted into the membrane is identical to that provoked by Esc(1-21). In addition, the presence of two d-amino acids is sufficient to reduce the α-helical content of the peptide, in parallel with its lower cytotoxicity.


Subject(s)
Amphibian Proteins/chemistry , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Biofilms/drug effects , Cytotoxins/chemistry , Pseudomonas aeruginosa/drug effects , Amino Acid Sequence , Amphibian Proteins/isolation & purification , Amphibian Proteins/pharmacology , Animals , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/isolation & purification , Antimicrobial Cationic Peptides/pharmacology , Biofilms/growth & development , Cholesterol/chemistry , Cytotoxins/isolation & purification , Cytotoxins/pharmacology , Kinetics , Leucine/chemistry , Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry , Phosphatidylethanolamines/chemistry , Phosphatidylglycerols/chemistry , Plankton/drug effects , Plankton/growth & development , Protein Conformation, alpha-Helical , Pseudomonas aeruginosa/growth & development , Ranidae , Serine/chemistry , Skin/chemistry , Spheroplasts/chemistry , Spheroplasts/drug effects , Stereoisomerism , Structure-Activity Relationship
13.
Amino Acids ; 49(1): 139-150, 2017 01.
Article in English | MEDLINE | ID: mdl-27726008

ABSTRACT

Antimicrobial peptides (AMPs) play a key role in the defence mechanism of living organisms against microbial pathogens, displaying both bactericidal and immunomodulatory properties. They are considered as a promising alternative to the conventional antibiotics towards which bacteria are becoming highly resistant. Recently, a derivative of the frog skin AMP esculentin-1a, esculentin-1a(1-21)NH2 [Esc(1-21)], showed a strong and fast membranolytic activity against Gram-negative bacteria but with a lower efficacy against Gram-positive ones. Here, with the aim to increase the α-helicity of Esc(1-21) and the expected potency against Gram-positive bacteria, we designed an analog bearing three α-aminoisobutyric acid (Aib) residues at positions 1, 10, and 18 of its primary structure. We demonstrated that the incorporation of Aib residues: (1) promoted the α-helix conformation of Esc(1-21), as confirmed by circular dichroism and two-dimensional nuclear magnetic resonance spectroscopies; (2) was sufficient to make this analog more active than the parent peptide against several Gram-positive bacterial strains without affecting its activity against Gram-negative bacteria; and (3) resulted to be devoid of toxic effect toward epithelial cells at the active antimicrobial concentrations. These results suggest that replacement of L-amino acids with Aib residues has beneficial effects on the structure and properties of the membrane-active peptide Esc(1-21), making it a better candidate for the design and development of selective drugs against Gram-positive bacteria.


Subject(s)
Aminoisobutyric Acids/chemistry , Amphibian Proteins/pharmacology , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , A549 Cells , Amino Acid Sequence , Amphibian Proteins/chemical synthesis , Amphibian Proteins/chemistry , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Cationic Peptides/chemistry , Cell Line, Transformed , Cell Survival/drug effects , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/growth & development , Humans , Keratinocytes/cytology , Keratinocytes/drug effects , Microbial Sensitivity Tests , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Engineering , Ranidae/physiology , Structure-Activity Relationship
14.
Antimicrob Agents Chemother ; 60(12): 7252-7262, 2016 12.
Article in English | MEDLINE | ID: mdl-27671059

ABSTRACT

Pseudomonas aeruginosa is the major microorganism colonizing the respiratory epithelium in cystic fibrosis (CF) sufferers. The widespread use of available antibiotics has drastically reduced their efficacy, and antimicrobial peptides (AMPs) are a promising alternative. Among them, the frog skin-derived AMPs, i.e., Esc(1-21) and its diastereomer, Esc(1-21)-1c, have recently shown potent activity against free-living and sessile forms of P. aeruginosa Importantly, this pathogen also escapes antibiotics treatment by invading airway epithelial cells. Here, we demonstrate that both AMPs kill Pseudomonas once internalized into bronchial cells which express either the functional or the ΔF508 mutant of the CF transmembrane conductance regulator. A higher efficacy is displayed by Esc(1-21)-1c (90% killing at 15 µM in 1 h). We also show the peptides' ability to stimulate migration of these cells and restore the induction of cell migration that is inhibited by Pseudomonas lipopolysaccharide when used at concentrations mimicking lung infection. This property of AMPs was not investigated before. Our findings suggest new therapeutics that not only eliminate bacteria but also can promote reepithelialization of the injured infected tissue. Confocal microscopy indicated that both peptides are intracellularly localized with a different distribution. Biochemical analyses highlighted that Esc(1-21)-1c is significantly more resistant than the all-l peptide to bacterial and human elastase, which is abundant in CF lungs. Besides proposing a plausible mechanism underlying the properties of the two AMPs, we discuss the data with regard to differences between them and suggest Esc(1-21)-1c as a candidate for the development of a new multifunctional drug against Pseudomonas respiratory infections.


Subject(s)
Amphibian Proteins/pharmacology , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Respiratory Mucosa/microbiology , Amphibian Proteins/chemistry , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Cell Movement/drug effects , Cells, Cultured , Cystic Fibrosis/microbiology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/drug effects , Epithelial Cells/microbiology , Humans , Lipopolysaccharides , Microscopy, Confocal , Pseudomonas Infections/microbiology
15.
Amino Acids ; 47(12): 2505-19, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26162435

ABSTRACT

Naturally occurring antimicrobial peptides (AMPs) represent promising future antibiotics. We have previously isolated esculentin-1a(1-21)NH2, a short peptide derived from the frog skin AMP esculentin-1a, with a potent anti-Pseudomonal activity. Here, we investigated additional functions of the peptide and properties responsible for these activities. For that purpose, we synthesized the peptide, as well as its structurally altered analog containing two D-amino acids. The peptides were then biophysically and biologically investigated for their cytotoxicity and immunomodulating activities. The data revealed that compared to the wild-type, the diastereomer: (1) is significantly less toxic towards mammalian cells, in agreement with its lower α-helical structure, as determined by circular dichroism spectroscopy; (2) is more effective against the biofilm form of Pseudomonas aeruginosa (responsible for lung infections in cystic fibrosis sufferers), while maintaining a high activity against the free-living form of this important pathogen; (3) is more stable in serum; (4) has a higher activity in promoting migration of lung epithelial cells, and presumably in healing damaged lung tissue, and (5) disaggregates and detoxifies the bacterial lipopolysaccharide (LPS), albeit less than the wild-type. Light scattering studies revealed a correlation between anti-LPS activity and the ability to disaggregate the LPS. Besides shedding light on the multifunction properties of esculentin-1a(1-21)NH2, the D-amino acid containing isomer may serve as an attractive template for the development of new anti-Pseudomonal compounds with additional beneficial properties. Furthermore, together with other studies, incorporation of D-amino acids may serve as a general approach to optimize the future design of new AMPs.


Subject(s)
Amino Acids/chemistry , Amphibian Proteins/chemistry , Antimicrobial Cationic Peptides/chemistry , Pseudomonas aeruginosa/drug effects , Amino Acid Sequence , Amphibian Proteins/chemical synthesis , Animals , Antimicrobial Cationic Peptides/chemical synthesis , Biofilms/drug effects , Cell Line , Cell Movement/drug effects , Cell Survival , Circular Dichroism , Epithelial Cells/drug effects , Humans , Lipopolysaccharides/chemistry , Macrophages/drug effects , Mice , Microbial Sensitivity Tests , Protein Structure, Tertiary , Pulmonary Alveoli/cytology , RAW 264.7 Cells , Ranidae , Skin/chemistry , Stereoisomerism
16.
Antibiotics (Basel) ; 13(8)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39200001

ABSTRACT

The number of antibiotic-resistant microbial infections is dramatically increasing, while the discovery of new antibiotics is significantly declining. Furthermore, the activity of antibiotics is negatively influenced by the ability of bacteria to form sessile communities, called biofilms, and by the microenvironment of the infection, characterized by an acidic pH, especially in the lungs of patients suffering from cystic fibrosis (CF). Antimicrobial peptides represent interesting alternatives to conventional antibiotics, and with expanding properties. Here, we explored the effects of an acidic pH on the antimicrobial and antibiofilm activities of the AMP Esc(1-21) and we found that it slightly lost activity (from 2- to 4-fold) against the planktonic form of a panel of Gram-negative bacteria, with respect to a ≥ 32-fold of traditional antibiotics. Furthermore, it retained its activity against the sessile form of these bacteria grown in media with a neutral pH, and showed similar or higher effectiveness against the biofilm form of bacteria grown in acidic media, simulating a CF-like acidic microenvironment, compared to physiological conditions.

17.
ACS Infect Dis ; 10(7): 2403-2418, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38848266

ABSTRACT

Staphylococcus aureus, a bacterium resistant to multiple drugs, is a significant cause of illness and death worldwide. Antimicrobial peptides (AMPs) provide an excellent potential strategy to cope with this threat. Recently, we characterized a derivative of the frog-skin AMP esculentin-1a, Esc(1-21) (1) that is endowed with potent activity against Gram-negative bacteria but poor efficacy against Gram-positive strains. In this study, three analogues of peptide 1 were designed by replacing Gly8 with α-aminoisobutyric acid (Aib), Pro, and dPro (2-4, respectively). The single substitution Gly8 → Aib8 in peptide 2 makes it active against the planktonic form of Gram-positive bacterial strains, especially Staphylococcus aureus, including multidrug-resistant clinical isolates, with an improved biostability without resulting in cytotoxicity to mammalian cells. Moreover, peptide 2 showed a higher antibiofilm activity than peptide 1 against both reference and clinical isolates of S. aureus. Peptide 2 was also able to induce rapid bacterial killing, suggesting a membrane-perturbing mechanism of action. Structural analysis of the most active peptide 2 evidenced that the improved biological activity of peptide 2 is the consequence of a combination of higher biostability, higher α helical content, and ability to reduce membrane fluidity and to adopt a distorted helix, bent in correspondence of Aib8. Overall, this study has shown how a strategic single amino acid substitution is sufficient to enlarge the spectrum of activity of the original peptide 1, and improve its biological properties for therapeutic purposes, thus paving the way to optimize AMPs for the development of new broad-spectrum anti-infective agents.


Subject(s)
Amino Acid Substitution , Anti-Bacterial Agents , Biofilms , Microbial Sensitivity Tests , Staphylococcus aureus , Biofilms/drug effects , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Humans , Amphibian Proteins/pharmacology , Amphibian Proteins/chemistry , Amphibian Proteins/genetics , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Animals , Drug Resistance, Bacterial
18.
J Med Chem ; 67(16): 14040-14061, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39116273

ABSTRACT

Peptides that form transmembrane barrel-stave pores are potential alternative therapeutics for bacterial infections and cancer. However, their optimization for clinical translation is hampered by a lack of sequence-function understanding. Recently, we have de novo designed the first synthetic barrel-stave pore-forming antimicrobial peptide with an identified function of all residues. Here, we systematically mutate the peptide to improve pore-forming ability in anticipation of enhanced activity. Using computer simulations, supported by liposome leakage and atomic force microscopy experiments, we find that pore-forming ability, while critical, is not the limiting factor for improving activity in the submicromolar range. Affinity for bacterial and cancer cell membranes needs to be optimized simultaneously. Optimized peptides more effectively killed antibiotic-resistant ESKAPEE bacteria at submicromolar concentrations, showing low cytotoxicity to human cells and skin model. Peptides showed systemic anti-infective activity in a preclinical mouse model of Acinetobacter baumannii infection. We also demonstrate peptide optimization for pH-dependent antimicrobial and anticancer activity.


Subject(s)
Antineoplastic Agents , Drug Design , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Animals , Mice , Microbial Sensitivity Tests , Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Cell Line, Tumor , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemical synthesis
19.
Front Chem ; 11: 1271153, 2023.
Article in English | MEDLINE | ID: mdl-37942400

ABSTRACT

Introduction: The increase in bacterial strains resistant to conventional antibiotics is an alarming problem for human health and could lead to pandemics in the future. Among bacterial pathogens responsible for a large variety of severe infections there is Pseudomonas aeruginosa. Therefore, there is an urgent need for new molecules with antimicrobial activity or that can act as adjuvants of antibiotics already in use. In this scenario, antimicrobial peptides (AMPs) hold great promise. Recently, we characterized a frog-skin AMP derived from esculentin-1a, namely Esc(1-21)-1c, endowed with antipseudomonal activity without being cytotoxic to human cells. Methods: The combinatorial effect of the peptide and antibiotics was investigated through the checkerboard assay, differential proteomic and transcriptional analysis. Results: Here, we found that Esc(1-21)-1c can synergistically inhibit the growth of P. aeruginosa cells with three different antibiotics, including tetracycline. We therefore investigated the underlying mechanism implemented by the peptide using a differential proteomic approach. The data revealed a significant decrease in the production of three proteins belonging to the MexAB-OprM efflux pump upon treatment with sub-inhibitory concentration of Esc(1-21)-1c. Down-regulation of these proteins was confirmed by transcriptional analysis and direct measurement of their relative levels in bacterial cells by tandem mass spectrometry analysis in multiple reaction monitoring scan mode. Conclusion: These evidences suggest that treatment with Esc(1-21)-1c in combination with antibiotics would increase the intracellular drug content making bacteria more susceptible to the antibiotic. Overall, these results highlight the importance of characterizing new molecules able to synergize with conventional antibiotics, paving the way for the development of alternative therapeutic strategies based on AMP/antibiotic formulations to counteract the emergence of resistant bacterial strains and increase the use of "old" antibiotics in medical practice.

20.
Biomolecules ; 13(7)2023 06 23.
Article in English | MEDLINE | ID: mdl-37509064

ABSTRACT

The corneal epithelium is a layer in the anterior part of eye that contributes to light refraction onto the retina and to the ocular immune defense. Although an intact corneal epithelium is an excellent barrier against microbial pathogens and injuries, corneal abrasions can lead to devastating eye infections. Among them, Pseudomonas aeruginosa-associated keratitis often results in severe deterioration of the corneal tissue and even blindness. Hence, the discovery of new drugs able not only to eradicate ocular infections, which are often resistant to antibiotics, but also to elicit corneal wound repair is highly demanded. Recently, we demonstrated the potent antipseudomonal activity of two peptides, Esc(1-21) and its diastereomer Esc(1-21)-1c. In this study, by means of a mouse model of P. aeruginosa keratitis and an in vivo corneal debridement wound, we discovered the efficacy of these peptides, particularly Esc(1-21)-1c, to cure keratitis and to promote corneal wound healing. This latter property was also supported by in vitro cell scratch and ELISA assays. Overall, the current study highlights Esc peptides as novel ophthalmic agents for treating corneal infection and injury, being able to display a dual function, antimicrobial and wound healing, rarely identified in a single peptide at the same micromolar concentration range.


Subject(s)
Corneal Injuries , Keratitis , Pseudomonas Infections , Animals , Mice , Pseudomonas aeruginosa , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Keratitis/drug therapy , Keratitis/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/chemistry , Corneal Injuries/drug therapy , Peptides/therapeutic use , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL