Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Front Immunol ; 12: 701411, 2021.
Article in English | MEDLINE | ID: mdl-34539632

ABSTRACT

In March 2020, the World Health Organization (WHO) declared a global health emergency-the coronavirus disease 2019 (COVID-19) pandemic. Since then, the development and implementation of vaccines against the virus amidst emerging cases of re-infection has prompted researchers to work towards understanding how immunity develops and is sustained. Serological testing has been instrumental in monitoring the development and persistence of antibodies against SARS-CoV-2 infection, however inconsistencies in detection have been reported by different methods. As serological testing becomes more commonplace, it is important to establish widespread and repeatable processes for monitoring vaccine efficacy. Therefore, we present enzyme linked immunosorbent assays (ELISAs) compatible for antibody detection in saliva as highly accurate, efficacious, and scalable tools for studying the immune response in individuals vaccinated against SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/analysis , Antibodies, Viral/analysis , COVID-19/immunology , SARS-CoV-2/immunology , Saliva/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , Enzyme-Linked Immunosorbent Assay , Humans
2.
Front Immunol ; 12: 777858, 2021.
Article in English | MEDLINE | ID: mdl-34956206

ABSTRACT

Background: Developing an understanding of the antibody response, seroprevalence, and seroconversion from natural infection and vaccination against SARS-CoV-2 will give way to a critical epidemiological tool to predict reinfection rates, identify vulnerable communities, and manage future viral outbreaks. To monitor the antibody response on a larger scale, we need an inexpensive, less invasive, and high throughput method. Methods: Here we investigate the use of oral mucosal fluids from individuals recovered from SARS-CoV-2 infection to monitor antibody response and persistence over a 12-month period. For this cohort study, enzyme-linked immunosorbent assays (ELISAs) were used to quantify anti-Spike(S) protein IgG antibodies in participants who had prior SARS-CoV-2 infection and regularly (every 2-4 weeks) provided both serum and oral fluid mucosal fluid samples for longitudinal antibody titer analysis. Results: In our study cohort (n=42) with 17 males and 25 females with an average age of 45.6 +/- 19.3 years, we observed no significant change in oral mucosal fluid IgG levels across the time course of antibody monitoring. In oral mucosal fluids, all the participants who initially had detectable antibodies continued to have detectable antibodies throughout the study. Conclusions: Based on the results presented here, we have shown that oral mucosal fluid-based assays are an effective, less invasive tool for monitoring seroprevalence and seroconversion, which offers an alternative to serum-based assays for understanding the protective ability conferred by the adaptive immune response from viral infection and vaccination against future reinfections.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Immunoglobulin G/immunology , Saliva/immunology , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Humans , Longitudinal Studies , Male , Middle Aged , Mouth Mucosa/immunology , SARS-CoV-2 , Seroconversion , Spike Glycoprotein, Coronavirus/immunology
3.
Sci Rep ; 11(1): 24448, 2021 12 27.
Article in English | MEDLINE | ID: mdl-34961780

ABSTRACT

COVID-19 mRNA vaccines are highly effective at preventing COVID-19. Prior studies have found detectable SARS-CoV-2 IgG antibodies in oral mucosal specimens of participants with history of COVID-19. To assess the development of oral SARS-CoV-2 IgG antibodies among people who received either the Moderna or Pfizer/BioNTech COVID-19 vaccination series, we developed a novel SARS-CoV-2 IgG enzyme-linked immunosorbent assay (ELISA) to quantify the concentrations of oral and nasal mucosal SARS-CoV-2 IgG levels. We enrolled 52 participants who received the Moderna vaccine and 80 participants who received the Pfizer/BioNTech vaccine. Oral mucosal specimens were self-collected by participants prior to or on the day of vaccination, and on days 5, 10, 15, and 20 following each vaccination dose and 30, 60, and 90 days following the second vaccination dose. A subset of the cohort provided additional nasal mucosal specimens at every time point. All participants developed detectable oral mucosal SARS-CoV-2 IgG antibodies by 15 days after the first vaccination dose. There were no significant differences in oral mucosal antibody concentrations once participants were fully vaccinated in the Moderna and Pfizer/BioNTech vaccines. Oral or nasal mucosal antibody testing could be an inexpensive and less invasive alternative to serum antibody testing. Further research is needed to understand the duration of detectable oral or nasal mucosal antibodies and how antibody concentrations change with time.


Subject(s)
Antibodies, Viral/analysis , Immunoglobulin G/analysis , Mouth Mucosa/metabolism , Respiratory System/metabolism , mRNA Vaccines/immunology , Adult , Aged , COVID-19/prevention & control , COVID-19/virology , Female , Health Personnel , Humans , Male , Middle Aged , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Time Factors , Vaccination , Young Adult , mRNA Vaccines/administration & dosage
4.
Sci Rep ; 10(1): 20818, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33257702

ABSTRACT

To facilitate containment of the COVID-19 pandemic currently active in the United States and across the world, options for easy, non-invasive antibody testing are required. Here we have adapted a commercially available, serum-based enzyme-linked immunosorbent assay (ELISA) for use with saliva samples, achieving 84.2% sensitivity and 100% specificity in a set of 149 clinical samples. This strategy will enable widespread, affordable testing for patients who experienced this disease, whilst minimizing exposure risk for healthcare workers.


Subject(s)
Antibodies, Viral/analysis , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Saliva/immunology , Carrier State/diagnosis , Clinical Laboratory Techniques , Immunoglobulin A/analysis , Immunoglobulin G/analysis , Immunoglobulin M/analysis , SARS-CoV-2/immunology , Sensitivity and Specificity
5.
Free Radic Biol Med ; 102: 100-110, 2017 01.
Article in English | MEDLINE | ID: mdl-27867097

ABSTRACT

The feeding of alcohol orally (Lieber-DeCarli diet) to rats has been shown to cause declines in mitochondrial respiration (state III), decreased expression of respiratory complexes, and decreased respiratory control ratios (RCR) in liver mitochondria. These declines and other mitochondrial alterations have led to the hypothesis that alcohol feeding causes "mitochondrial dysfunction" in the liver. If oral alcohol feeding leads to mitochondrial dysfunction, one would predict that increasing alcohol delivery by intragastric (IG) alcohol feeding to rats would cause greater declines in mitochondrial bioenergetics in the liver. In this study, we examined the mitochondrial alterations that occur in rats fed alcohol both orally and intragastrically. Oral alcohol feeding decreased glutamate/malate-, acetaldehyde- and succinate-driven state III respiration, RCR, and expression of respiratory complexes (I, III, IV, V) in liver mitochondria, in agreement with previous results. IG alcohol feeding, on the other hand, caused a slight increase in glutamate/malate-driven respiration, and significantly increased acetaldehyde-driven respiration in liver mitochondria. IG feeding also caused liver mitochondria to experience a decline in succinate-driven respiration, but these decreases were smaller than those observed with oral alcohol feeding. Surprisingly, oral and IG alcohol feeding to rats increased mitochondrial respiration using other substrates, including glycerol-3-phosphate (which delivers electrons from cytoplasmic NADH to mitochondria) and octanoate (a substrate for beta-oxidation). The enhancement of glycerol-3-phosphate- and octanoate-driven respiration suggests that liver mitochondria remodeled in response to alcohol feeding. In support of this notion, we observed that IG alcohol feeding also increased expression of mitochondrial glycerol phosphate dehydrogenase-2 (GPD2), transcription factor A (TFAM), and increased mitochondrial NAD+-NADH and NADP+-NADPH levels in the liver. Our findings suggest that mitochondrial dysfunction represents an incomplete picture of mitochondrial dynamics that occur in the liver following alcohol feeding. While alcohol feeding causes some mitochondrial dysfunction (i.e. succinate-driven respiration), our work suggests that the major consequence of alcohol feeding is mitochondrial remodeling in the liver as an adaptation. This mitochondrial remodeling may play an important role in the enhanced alcohol metabolism and other adaptations in the liver that develop with alcohol intake.


Subject(s)
Alcohol Drinking/adverse effects , Ethanol/toxicity , Mitochondria, Liver/drug effects , Acetaldehyde/metabolism , Alcoholism/metabolism , Alcoholism/pathology , Animals , Energy Metabolism , Humans , Malates , Mitochondria, Liver/pathology , NAD/metabolism , Oxidation-Reduction/drug effects , Oxygen Consumption/drug effects , Rats
SELECTION OF CITATIONS
SEARCH DETAIL