Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Methods ; 212: 39-57, 2023 04.
Article in English | MEDLINE | ID: mdl-36934614

ABSTRACT

Nanocomposites and low-viscous materials lack translation in additive manufacturing technologies due to deficiency in rheological requirements and heterogeneity of their preparation. This work proposes the chemical crosslinking between composing phases as a universal approach for mitigating such issues. The model system is composed of amine-functionalized bioactive glass nanoparticles (BGNP) and light-responsive methacrylated bovine serum albumin (BSAMA) which further allows post-print photocrosslinking. The interfacial interaction was conducted by 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide crosslinking agent and N-Hydroxysuccinimide between BGNP-grafted amines and BSAMA's carboxylic groups. Different chemical crosslinking amounts and percentages of BGNP in the nanocomposites were tested. The improved interface interactions increased the elastic and viscous modulus of all formulations. More pronounced increases were found with the highest crosslinking agent amounts (4 % w/v) and BGNP concentrations (10 % w/w). This formulation also displayed the highest Young's modulus of the double-crosslinked construct. All composite formulations could effectively immobilize the BGNP and turn an extremely low viscous material into an appropriate inks for 3d printing technologies, attesting for the systems' tunability. Thus, we describe a versatile methodology which can successfully render tunable and light-responsive nanocomposite inks with homogeneously distributed bioactive fillers. This system can further reproducibly recapitulate phases of other natures, broadening applicability.


Subject(s)
Ink , Nanoparticles , Tissue Engineering/methods , Printing, Three-Dimensional , Rheology
2.
Biomacromolecules ; 24(7): 3380-3396, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37337408

ABSTRACT

Dynamic G-quadruplex supramolecular hydrogels have aroused great interest in a broad range of bioapplications. However, neither the development of native extracellular matrix (ECM)-derived natural biopolymer-functionalized G-quadruplex hydrogels nor their use to create perfusable self-supporting hydrogels has been explored to date, despite their intrinsic potential as carrier vehicles of therapeutic agents, or even living cells in advanced regenerative therapies, or as platforms to enable the diffusion of nutrients and oxygen to sustain long-term cell survival. Herein, we developed a dynamic co-assembling multicomponent system that integrates guanosine (G), 3-aminophenylboronic acid functionalized hyaluronic acid (HA-PBA), and potassium chloride to bioengineer strong, homogeneous, and transparent HA-functionalized G-quadruplex hydrogels with injectable, thermo-reversible, conductive, and self-healing properties. The supramolecular polymeric hydrogels were developed by hydrogen bonding and π-π stacking interactions between G coupled via dynamic covalent boronate ester bonds to HA-PBA and stabilized by K+ ions, as demonstrated by a combination of experiments and molecular dynamics simulations. The intrinsic instability of the self-assembled G-quadruplex structures was used to bioengineer self-supporting perfusable multicomponent hydrogels with interconnected size and shape-tunable hollow microchannels when embedded in 3D methacrylated gelatin supporting matrices. The microchannel-embedded 3D constructs have shown enhanced cell viability when compared to the bulk hydrogels, holding great promise for being use as artificial vessels for enabling the diffusion of nutrients and oxygen essential for cell survival. The proposed approach opens new avenues on the use of ECM-derived natural biopolymer-functionalized dynamic G-quadruplex hydrogels to design next-generation smart systems for being used in tissue regeneration, drug screening, or organ-on-a-chip.


Subject(s)
Hyaluronic Acid , Hydrogels , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Extracellular Matrix/chemistry , Gelatin/chemistry
3.
ACS Appl Mater Interfaces ; 16(15): 18386-18399, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38591243

ABSTRACT

Cryogels exhibit unique shape memory with full recovery and structural stability features after multiple injections. These constructs also possess enhanced cell permeability and nutrient diffusion when compared to typical bulk hydrogels. Volumetric processing of cryogels functionalized with nanosized units has potential to widen their biomedical applications, however this has remained challenging and relatively underexplored. In this study, we report a novel methodology that combines suspension 3D printing with directional freezing for the fabrication of nanocomposite cryogels with configurable anisotropy. When compared to conventional bulk or freeze-dried hydrogels, nanocomposite cryogel formulations exhibit excellent shape recovery (>95%) and higher pore connectivity. Suspension printing, assisted with a prechilled metal grid, was optimized to induce anisotropy. The addition of calcium- and phosphate-doped mesoporous silica nanoparticles into the cryogel matrix enhanced bioactivity toward orthopedic applications without hindering the printing process. Notably, the nanocomposite 3D printed cryogels exhibit injectable shape memory while also featuring a lamellar topography. The fabrication of these constructs was highly reproducible and exhibited potential for a cell-delivery injectable cryogel with no cytotoxicity to human-derived adipose stem cells. Hence, in this work, it was possible to combine a gravity defying 3D printed methodology with injectable and controlled anisotropic macroporous structures containing bioactive nanoparticles. This methodology ameliorates highly tunable injectable 3D printed anisotropic nanocomposite cryogels with a user-programmable degree of structural complexity.


Subject(s)
Cryogels , Printing, Three-Dimensional , Humans , Cryogels/chemistry , Anisotropy , Adipocytes , Tissue Engineering/methods , Tissue Scaffolds/chemistry
4.
Adv Healthc Mater ; 12(28): e2301513, 2023 11.
Article in English | MEDLINE | ID: mdl-37515450

ABSTRACT

The optimized physical adhesion between bees' leg hairs and pollen grains-whereby the latter's diameter aligns with the spacing between the hairs-has previously inspired the development of a biomimetic drug dressing. Combining this optimized process with the improved natural mussels' adhesion in wet environments in a dual biomimetic process, it is herein proposed the fabrication of a natural-derived micropatterned hydrogel patch of methacrylated laminarin (LAM-MET), with enriched drug content and improved adhesiveness, suitable for applications like wound healing. Enhanced adhesion is accomplished by modifying LAM-MET with hydroxypyridinone groups, following the patch microfabrication by soft lithography and UV/vis-irradiation, resulting in a membrane with micropillars with a high aspect ratio. Following the biomimetics rational, a drug patch is engineered by combining the microfabricated dressing with drug particles milled to fit the spaces between pillars. Controlled drug release is achieved, together with inherent antibacterial activity against Escherichia coli and Pseudomonas aeruginosa, and enhanced biocompatibility using the bare micropatterned patches. This new class of biomimetic dressings overcomes the challenges of current patches, like poor mechanical properties and biocompatibility, limited adhesiveness and drug dosage, and lack of prolonged antimicrobial activity, opening new insights for the development of high drug-loaded dressings with improved patient compliance.


Subject(s)
Adhesives , Biomimetics , Animals , Humans , Adhesives/pharmacology , Biomimetics/methods , Hydrogels/pharmacology , Drug Liberation , Wound Healing , Anti-Bacterial Agents/pharmacology
5.
Polymers (Basel) ; 12(10)2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32977680

ABSTRACT

Stimuli-responsive polymer materials are used in smart nanocarriers to provide the stimuli-actuated mechanical and chemical changes that modulate cargo delivery. To take full advantage of the potential of stimuli-responsive polymers for controlled delivery applications, these have been grafted to the surface of mesoporous silica particles (MSNs), which are mechanically robust, have very large surface areas and available pore volumes, uniform and tunable pore sizes and a large diversity of surface functionalization options. Here, we explore the impact of different RAFT-based grafting strategies on the amount of a pH-responsive polymer incorporated in the shell of MSNs. Using a "grafting to" (gRAFT-to) approach we studied the effect of polymer chain size on the amount of polymer in the shell. This was compared with the results obtained with a "grafting from" (gRAFT-from) approach, which yield slightly better polymer incorporation values. These two traditional grafting methods yield relatively limited amounts of polymer incorporation, due to steric hindrance between free chains in "grafting to" and to termination reactions between growing chains in "grafting from." To increase the amount of polymer in the nanocarrier shell, we developed two strategies to improve the "grafting from" process. In the first, we added a cross-linking agent (gRAFT-cross) to limit the mobility of the growing polymer and thus decrease termination reactions at the MSN surface. On the second, we tested a hybrid grafting process (gRAFT-hybrid) where we added MSNs functionalized with chain transfer agent to the reaction media containing monomer and growing free polymer chains. Our results show that both modifications yield a significative increase in the amount of grafted polymer.

SELECTION OF CITATIONS
SEARCH DETAIL