Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 542
Filter
Add more filters

Publication year range
1.
Cell ; 186(2): 446-460.e19, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36638795

ABSTRACT

Precise targeting of large transgenes to T cells using homology-directed repair has been transformative for adoptive cell therapies and T cell biology. Delivery of DNA templates via adeno-associated virus (AAV) has greatly improved knockin efficiencies, but the tropism of current AAV serotypes restricts their use to human T cells employed in immunodeficient mouse models. To enable targeted knockins in murine T cells, we evolved Ark313, a synthetic AAV that exhibits high transduction efficiency in murine T cells. We performed a genome-wide knockout screen and identified QA2 as an essential factor for Ark313 infection. We demonstrate that Ark313 can be used for nucleofection-free DNA delivery, CRISPR-Cas9-mediated knockouts, and targeted integration of large transgenes. Ark313 enables preclinical modeling of Trac-targeted CAR-T and transgenic TCR-T cells in immunocompetent models. Efficient gene targeting in murine T cells holds great potential for improved cell therapies and opens avenues in experimental T cell immunology.


Subject(s)
Dependovirus , Genetic Engineering , T-Lymphocytes , Animals , Mice , CRISPR-Cas Systems/genetics , Dependovirus/genetics , Gene Targeting , Genetic Engineering/methods
2.
Cell ; 186(21): 4567-4582.e20, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37794590

ABSTRACT

CRISPR-Cas9 genome editing has enabled advanced T cell therapies, but occasional loss of the targeted chromosome remains a safety concern. To investigate whether Cas9-induced chromosome loss is a universal phenomenon and evaluate its clinical significance, we conducted a systematic analysis in primary human T cells. Arrayed and pooled CRISPR screens revealed that chromosome loss was generalizable across the genome and resulted in partial and entire loss of the targeted chromosome, including in preclinical chimeric antigen receptor T cells. T cells with chromosome loss persisted for weeks in culture, implying the potential to interfere with clinical use. A modified cell manufacturing process, employed in our first-in-human clinical trial of Cas9-engineered T cells (NCT03399448), reduced chromosome loss while largely preserving genome editing efficacy. Expression of p53 correlated with protection from chromosome loss observed in this protocol, suggesting both a mechanism and strategy for T cell engineering that mitigates this genotoxicity in the clinic.


Subject(s)
CRISPR-Cas Systems , Chromosome Aberrations , Gene Editing , T-Lymphocytes , Humans , Chromosomes , CRISPR-Cas Systems/genetics , DNA Damage , Gene Editing/methods , Clinical Trials as Topic
3.
Annu Rev Biochem ; 84: 765-90, 2015.
Article in English | MEDLINE | ID: mdl-26034893

ABSTRACT

Hydrogen peroxide (H2O2) is a prime member of the reactive oxygen species (ROS) family of molecules produced during normal cell function and in response to various stimuli, but if left unchecked, it can inflict oxidative damage on all types of biological macromolecules and lead to cell death. In this context, a major source of H2O2 for redox signaling purposes is the NADPH oxidase (Nox) family of enzymes, which were classically studied for their roles in phagocytic immune response but have now been found to exist in virtually all mammalian cell types in various isoforms with distinct tissue and subcellular localizations. Downstream of this tightly regulated ROS generation, site-specific, reversible covalent modification of proteins, particularly oxidation of cysteine thiols to sulfenic acids, represents a prominent posttranslational modification akin to phosphorylation as an emerging molecular mechanism for transforming an oxidant signal into a dynamic biological response. We review two complementary types of chemical tools that enable (a) specific detection of H2O2 generated at its sources and (b) mapping of sulfenic acid posttranslational modification targets that mediate its signaling functions, which can be used to study this important chemical signal in biological systems.


Subject(s)
Hydrogen Peroxide/metabolism , NADPH Oxidases/metabolism , Signal Transduction , Animals , Humans , Oxidation-Reduction , Sulfenic Acids/metabolism
4.
Nature ; 627(8004): 680-687, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38448587

ABSTRACT

Methods for selective covalent modification of amino acids on proteins can enable a diverse array of applications, spanning probes and modulators of protein function to proteomics1-3. Owing to their high nucleophilicity, cysteine and lysine residues are the most common points of attachment for protein bioconjugation chemistry through acid-base reactivity3,4. Here we report a redox-based strategy for bioconjugation of tryptophan, the rarest amino acid, using oxaziridine reagents that mimic oxidative cyclization reactions in indole-based alkaloid biosynthetic pathways to achieve highly efficient and specific tryptophan labelling. We establish the broad use of this method, termed tryptophan chemical ligation by cyclization (Trp-CLiC), for selectively appending payloads to tryptophan residues on peptides and proteins with reaction rates that rival traditional click reactions and enabling global profiling of hyper-reactive tryptophan sites across whole proteomes. Notably, these reagents reveal a systematic map of tryptophan residues that participate in cation-π interactions, including functional sites that can regulate protein-mediated phase-separation processes.


Subject(s)
Cations , Cyclization , Indicators and Reagents , Proteins , Tryptophan , Cations/chemistry , Indicators and Reagents/chemistry , Oxidation-Reduction , Proteome/chemistry , Tryptophan/chemistry , Peptides/chemistry , Click Chemistry , Proteins/chemistry
5.
Mol Cell ; 82(16): 3045-3060.e11, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35752173

ABSTRACT

Cancer mortality is primarily a consequence of its metastatic spread. Here, we report that methionine sulfoxide reductase A (MSRA), which can reduce oxidized methionine residues, acts as a suppressor of pancreatic ductal adenocarcinoma (PDA) metastasis. MSRA expression is decreased in the metastatic tumors of PDA patients, whereas MSRA loss in primary PDA cells promotes migration and invasion. Chemoproteomic profiling of pancreatic organoids revealed that MSRA loss results in the selective oxidation of a methionine residue (M239) in pyruvate kinase M2 (PKM2). Moreover, M239 oxidation sustains PKM2 in an active tetrameric state to promote respiration, migration, and metastasis, whereas pharmacological activation of PKM2 increases cell migration and metastasis in vivo. These results demonstrate that methionine residues can act as reversible redox switches governing distinct signaling outcomes and that the MSRA-PKM2 axis serves as a regulatory nexus between redox biology and cancer metabolism to control tumor metastasis.


Subject(s)
Carcinoma, Pancreatic Ductal , Carrier Proteins/metabolism , Membrane Proteins/metabolism , Pancreatic Neoplasms , Thyroid Hormones/metabolism , Carcinoma, Pancreatic Ductal/genetics , Humans , Methionine , Methionine Sulfoxide Reductases/chemistry , Methionine Sulfoxide Reductases/metabolism , Oxidation-Reduction , Pancreatic Neoplasms/genetics , Pyruvate Kinase/metabolism , Thyroid Hormone-Binding Proteins , Pancreatic Neoplasms
6.
Mol Cell ; 80(6): 1013-1024.e6, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33338401

ABSTRACT

Impaired DNA crosslink repair leads to Fanconi anemia (FA), characterized by a unique manifestation of bone marrow failure and pancytopenia among diseases caused by DNA damage response defects. As a germline disorder, why the hematopoietic hierarchy is specifically affected is not fully understood. We find that reprogramming transcription during hematopoietic differentiation results in an overload of genotoxic stress, which causes aborted differentiation and depletion of FA mutant progenitor cells. DNA damage onset most likely arises from formaldehyde, an obligate by-product of oxidative protein demethylation during transcription regulation. Our results demonstrate that rapid and extensive transcription reprogramming associated with hematopoietic differentiation poses a major threat to genome stability and cell viability in the absence of the FA pathway. The connection between differentiation and DNA damage accumulation reveals a novel mechanism of genome scarring and is critical to exploring therapies to counteract the aplastic anemia for the treatment of FA patients.


Subject(s)
Cell Differentiation/drug effects , Cellular Reprogramming/genetics , Fanconi Anemia/genetics , Formaldehyde/toxicity , DNA Damage/drug effects , DNA Repair/genetics , Fanconi Anemia/blood , Fanconi Anemia/pathology , Formaldehyde/metabolism , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Developmental/genetics , Genomic Instability/genetics , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/drug effects , Humans , K562 Cells , Transcription, Genetic
7.
Genes Dev ; 34(7-8): 526-543, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32079652

ABSTRACT

MDM2 and MDMX, negative regulators of the tumor suppressor p53, can work separately and as a heteromeric complex to restrain p53's functions. MDM2 also has pro-oncogenic roles in cells, tissues, and animals that are independent of p53. There is less information available about p53-independent roles of MDMX or the MDM2-MDMX complex. We found that MDM2 and MDMX facilitate ferroptosis in cells with or without p53. Using small molecules, RNA interference reagents, and mutant forms of MDMX, we found that MDM2 and MDMX, likely working in part as a complex, normally facilitate ferroptotic death. We observed that MDM2 and MDMX alter the lipid profile of cells to favor ferroptosis. Inhibition of MDM2 or MDMX leads to increased levels of FSP1 protein and a consequent increase in the levels of coenzyme Q10, an endogenous lipophilic antioxidant. This suggests that MDM2 and MDMX normally prevent cells from mounting an adequate defense against lipid peroxidation and thereby promote ferroptosis. Moreover, we found that PPARα activity is essential for MDM2 and MDMX to promote ferroptosis, suggesting that the MDM2-MDMX complex regulates lipids through altering PPARα activity. These findings reveal the complexity of cellular responses to MDM2 and MDMX and suggest that MDM2-MDMX inhibition might be useful for preventing degenerative diseases involving ferroptosis. Furthermore, they suggest that MDM2/MDMX amplification may predict sensitivity of some cancers to ferroptosis inducers.


Subject(s)
Cell Cycle Proteins/metabolism , Ferroptosis/genetics , Lipid Metabolism/genetics , PPAR alpha/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , Proto-Oncogene Proteins/metabolism , Animals , Brain/metabolism , Brain/physiopathology , Cell Cycle Proteins/genetics , Glioblastoma/physiopathology , HCT116 Cells , Humans , Mutation , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Proto-Oncogene Proteins c-mdm2/genetics , RNA Interference , Rats , Tumor Suppressor Protein p53/metabolism , Ubiquinone/analogs & derivatives , Ubiquinone/metabolism
8.
Proc Natl Acad Sci U S A ; 121(39): e2320611121, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39288174

ABSTRACT

Cuprous copper [Cu(I)] is an essential cofactor for enzymes that support many fundamental cellular functions including mitochondrial respiration and suppression of oxidative stress. Neurons are particularly reliant on mitochondrial production of ATP, with many neurodegenerative diseases, including Parkinson's disease, associated with diminished mitochondrial function. The gene MBLAC1 encodes a ribonuclease that targets pre-mRNA of replication-dependent histones, proteins recently found in yeast to reduce Cu(II) to Cu(I), and when mutated disrupt ATP production, elevates oxidative stress, and severely impacts cell growth. Whether this process supports neuronal and/or systemic physiology in higher eukaryotes is unknown. Previously, we identified swip-10, the putative Caenorhabditis elegans ortholog of MBLAC1, establishing a role for glial swip-10 in limiting dopamine (DA) neuron excitability and sustaining DA neuron viability. Here, we provide evidence from computational modeling that SWIP-10 protein structure mirrors that of MBLAC1 and locates a loss of function coding mutation at a site expected to disrupt histone RNA hydrolysis. Moreover, we find through genetic, biochemical, and pharmacological studies that deletion of swip-10 in worms negatively impacts systemic Cu(I) levels, leading to deficits in mitochondrial respiration and ATP production, increased oxidative stress, and neurodegeneration. These phenotypes can be offset in swip-10 mutants by the Cu(I) enhancing molecule elesclomol and through glial expression of wildtype swip-10. Together, these studies reveal a glial-expressed pathway that supports systemic mitochondrial function and neuronal health via regulation of Cu(I) homeostasis, a mechanism that may lend itself to therapeutic strategies to treat devastating neurodegenerative diseases.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Copper , Homeostasis , Mitochondria , Neuroglia , Oxidative Stress , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Mitochondria/metabolism , Copper/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Neuroglia/metabolism , Dopaminergic Neurons/metabolism , Cell Survival , Neurons/metabolism
9.
Proc Natl Acad Sci U S A ; 121(28): e2401579121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968123

ABSTRACT

Iron is an essential element for life owing to its ability to participate in a diverse array of oxidation-reduction reactions. However, misregulation of iron-dependent redox cycling can also produce oxidative stress, contributing to cell growth, proliferation, and death pathways underlying aging, cancer, neurodegeneration, and metabolic diseases. Fluorescent probes that selectively monitor loosely bound Fe(II) ions, termed the labile iron pool, are potentially powerful tools for studies of this metal nutrient; however, the dynamic spatiotemporal nature and potent fluorescence quenching capacity of these bioavailable metal stores pose challenges for their detection. Here, we report a tandem activity-based sensing and labeling strategy that enables imaging of labile iron pools in live cells through enhancement in cellular retention. Iron green-1 fluoromethyl (IG1-FM) reacts selectively with Fe(II) using an endoperoxide trigger to release a quinone methide dye for subsequent attachment to proximal biological nucleophiles, providing a permanent fluorescent stain at sites of elevated labile iron. IG1-FM imaging reveals that degradation of the major iron storage protein ferritin through ferritinophagy expands the labile iron pool, while activation of nuclear factor-erythroid 2-related factor 2 (NRF2) antioxidant response elements (AREs) depletes it. We further show that lung cancer cells with heightened NRF2 activation, and thus lower basal labile iron, have reduced viability when treated with an iron chelator. By connecting labile iron pools and NRF2-ARE activity to a druggable metal-dependent vulnerability in cancer, this work provides a starting point for broader investigations into the roles of transition metal and antioxidant signaling pathways in health and disease.


Subject(s)
Antioxidant Response Elements , Iron , Humans , Iron/metabolism , Fluorescent Dyes/chemistry , NF-E2-Related Factor 2/metabolism , Ferritins/metabolism , Oxidative Stress , Oxidation-Reduction , Cell Line, Tumor , Antioxidants/metabolism
10.
Chem Rev ; 124(9): 5846-5929, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38657175

ABSTRACT

Although transition metals constitute less than 0.1% of the total mass within a human body, they have a substantial impact on fundamental biological processes across all kingdoms of life. Indeed, these nutrients play crucial roles in the physiological functions of enzymes, with the redox properties of many of these metals being essential to their activity. At the same time, imbalances in transition metal pools can be detrimental to health. Modern analytical techniques are helping to illuminate the workings of metal homeostasis at a molecular and atomic level, their spatial localization in real time, and the implications of metal dysregulation in disease pathogenesis. Fluorescence microscopy has proven to be one of the most promising non-invasive methods for studying metal pools in biological samples. The accuracy and sensitivity of bioimaging experiments are predominantly determined by the fluorescent metal-responsive sensor, highlighting the importance of rational probe design for such measurements. This review covers activity- and binding-based fluorescent metal sensors that have been applied to cellular studies. We focus on the essential redox-active metals: iron, copper, manganese, cobalt, chromium, and nickel. We aim to encourage further targeted efforts in developing innovative approaches to understanding the biological chemistry of redox-active metals.


Subject(s)
Fluorescent Dyes , Oxidation-Reduction , Fluorescent Dyes/chemistry , Humans , Metals/chemistry , Metals/metabolism , Animals , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Microscopy, Fluorescence
11.
Proc Natl Acad Sci U S A ; 120(43): e2311131120, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37844228

ABSTRACT

Many neurons in the central nervous system produce a single primary cilium that serves as a specialized signaling organelle. Several neuromodulatory G-protein-coupled receptors (GPCRs) localize to primary cilia in neurons, although it is not understood how GPCR signaling from the cilium impacts circuit function and behavior. We find that the vertebrate ancient long opsin A (VALopA), a Gi-coupled GPCR extraretinal opsin, targets to cilia of zebrafish spinal neurons. In the developing 1-d-old zebrafish, brief light activation of VALopA in neurons of the central pattern generator circuit for locomotion leads to sustained inhibition of coiling, the earliest form of locomotion. We find that a related extraretinal opsin, VALopB, is also Gi-coupled, but is not targeted to cilia. Light-induced activation of VALopB also suppresses coiling, but with faster kinetics. We identify the ciliary targeting domains of VALopA. Retargeting of both opsins shows that the locomotory response is prolonged and amplified when signaling occurs in the cilium. We propose that ciliary localization provides a mechanism for enhancing GPCR signaling in central neurons.


Subject(s)
Receptors, G-Protein-Coupled , Zebrafish , Animals , Receptors, G-Protein-Coupled/physiology , Signal Transduction/physiology , Opsins , Rod Opsins , Neurons , Cilia/physiology
12.
PLoS Genet ; 19(1): e1010558, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36626371

ABSTRACT

Copper (Cu) has a multifaceted role in brain development, function, and metabolism. Two homologous Cu transporters, Atp7a (Menkes disease protein) and Atp7b (Wilson disease protein), maintain Cu homeostasis in the tissue. Atp7a mediates Cu entry into the brain and activates Cu-dependent enzymes, whereas the role of Atp7b is less clear. We show that during postnatal development Atp7b is necessary for normal morphology and function of choroid plexus (ChPl). Inactivation of Atp7b causes reorganization of ChPl' cytoskeleton and cell-cell contacts, loss of Slc31a1 from the apical membrane, and a decrease in the length and number of microvilli and cilia. In ChPl lacking Atp7b, Atp7a is upregulated but remains intracellular, which limits Cu transport into the brain and results in significant Cu deficit, which is reversed only in older animals. Cu deficiency is associated with down-regulation of Atp7a in locus coeruleus and catecholamine imbalance, despite normal expression of dopamine-ß-hydroxylase. In addition, there are notable changes in the brain lipidome, which can be attributed to inhibition of diacylglyceride-to-phosphatidylethanolamine conversion. These results identify the new role for Atp7b in developing brain and identify metabolic changes that could be exacerbated by Cu chelation therapy.


Subject(s)
Copper , Menkes Kinky Hair Syndrome , Mice , Animals , Copper-Transporting ATPases , Copper/metabolism , Choroid Plexus/metabolism , Menkes Kinky Hair Syndrome/metabolism , Brain/metabolism
13.
Proc Natl Acad Sci U S A ; 119(29): e2201879119, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35858318

ABSTRACT

The photo-driven process of singlet fission generates coupled triplet pairs (TT) with fundamentally intriguing and potentially useful properties. The quintet 5TT0 sublevel is particularly interesting for quantum information because it is highly entangled, is addressable with microwave pulses, and could be detected using optical techniques. Previous theoretical work on a model Hamiltonian and nonadiabatic transition theory, called the JDE model, has determined that this sublevel can be selectively populated if certain conditions are met. Among the most challenging, the molecules within the dimer undergoing singlet fission must have their principal magnetic axes parallel to one another and to an applied Zeeman field. Here, we present time-resolved electron paramagnetic resonance (TR-EPR) spectroscopy of a single crystal sample of a tetracenethiophene compound featuring arrays of dimers aligned in this manner, which were mounted so that the orientation of the field relative to the molecular axes could be controlled. The observed spin sublevel populations in the paired TT and unpaired (T+T) triplets are consistent with predictions from the JDE model, including preferential 5TT0 formation at z ‖ B0, with one caveat-two 5TT spin sublevels have little to no population. This may be due to crossings between the 5TT and 3TT manifolds in the field range investigated by TR-EPR, consistent with the intertriplet exchange energy determined by monitoring photoluminescence at varying magnetic fields.

14.
Proc Natl Acad Sci U S A ; 119(43): e2202736119, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36252013

ABSTRACT

Copper is an essential metal nutrient for life that often relies on redox cycling between Cu(I) and Cu(II) oxidation states to fulfill its physiological roles, but alterations in cellular redox status can lead to imbalances in copper homeostasis that contribute to cancer and other metalloplasias with metal-dependent disease vulnerabilities. Copper-responsive fluorescent probes offer powerful tools to study labile copper pools, but most of these reagents target Cu(I), with limited methods for monitoring Cu(II) owing to its potent fluorescence quenching properties. Here, we report an activity-based sensing strategy for turn-on, oxidation state-specific detection of Cu(II) through metal-directed acyl imidazole chemistry. Cu(II) binding to a metal and oxidation state-specific receptor that accommodates the harder Lewis acidity of Cu(II) relative to Cu(I) activates the pendant dye for reaction with proximal biological nucleophiles and concomitant metal ion release, thus avoiding fluorescence quenching. Copper-directed acyl imidazole 649 for Cu(II) (CD649.2) provides foundational information on the existence and regulation of labile Cu(II) pools, including identifying divalent metal transporter 1 (DMT1) as a Cu(II) importer, labile Cu(II) increases in response to oxidative stress induced by depleting total glutathione levels, and reciprocal increases in labile Cu(II) accompanied by decreases in labile Cu(I) induced by oncogenic mutations that promote oxidative stress.


Subject(s)
Copper , Fluorescent Dyes , Copper/metabolism , Fluorescent Dyes/chemistry , Glutathione/metabolism , Imidazoles , Oncogenes , Oxidation-Reduction
15.
J Am Chem Soc ; 146(13): 8865-8876, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38470125

ABSTRACT

Formate is a major reactive carbon species in one-carbon metabolism, where it serves as an endogenous precursor for amino acid and nucleic acid biosynthesis and a cellular source of NAD(P)H. On the other hand, aberrant elevations in cellular formate are connected to progression of serious diseases, including cancer and Alzheimer's disease. Traditional methods for formate detection in biological environments often rely on sample destruction or extensive processing, resulting in a loss of spatiotemporal information. To help address these limitations, here we present the design, synthesis, and biological evaluation of a first-generation activity-based sensing system for live-cell formate imaging that relies on iridium-mediated transfer hydrogenation chemistry. Formate facilitates an aldehyde-to-alcohol conversion on various fluorophore scaffolds to enable fluorescence detection of this one-carbon unit, including through a two-color ratiometric response with internal calibration. The resulting two-component probe system can detect changes in formate levels in living cells with a high selectivity over potentially competing biological analytes. Moreover, this activity-based sensing system can visualize changes in endogenous formate fluxes through alterations of one-carbon pathways in cell-based models of human colon cancer, presaging the potential utility of this chemical approach to probe the continuum between one-carbon metabolism and signaling in cancer and other diseases.


Subject(s)
NAD , Neoplasms , Humans , Hydrogenation , NAD/metabolism , Carbon , Formates/chemistry
16.
J Autoimmun ; 146: 103203, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643729

ABSTRACT

Lupus erythematosus (LE) is a heterogeneous, antibody-mediated autoimmune disease. Isolate discoid LE (IDLE) and systematic LE (SLE) are traditionally regarded as the two ends of the spectrum, ranging from skin-limited damage to life-threatening multi-organ involvement. Both belong to LE, but IDLE and SLE differ in appearance of skin lesions, autoantibody panels, pathological changes, treatments, and immunopathogenesis. Is discoid lupus truly a form of LE or is it a completely separate entity? This question has not been fully elucidated. We compared the clinical data of IDLE and SLE from our center, applied multi-omics technology, such as immune repertoire sequencing, high-resolution HLA alleles sequencing and multi-spectrum pathological system to explore cellular and molecular phenotypes in skin and peripheral blood from LE patients. Based on the data from 136 LE patients from 8 hospitals in China, we observed higher damage scores and fewer LE specific autoantibodies in IDLE than SLE patients, more uCDR3 sharing between PBMCs and skin lesion from SLE than IDLE patients, elevated diversity of V-J recombination in IDLE skin lesion and SLE PBMCs, increased SHM frequency and class switch ratio in IDLE skin lesion, decreased SHM frequency but increased class switch ratio in SLE PBMCs, HLA-DRB1*03:01:01:01, HLA-B*58:01:01:01, HLA-C*03:02:02:01, and HLA-DQB1*02:01:01:01 positively associated with SLE patients, and expanded Tfh-like cells with ectopic germinal center structures in IDLE skin lesions. These findings suggest a significant difference in the immunopathogenesis of skin lesions between SLE and IDLE patients. SLE is a B cell-predominate systemic immune disorder, while IDLE appears limited to the skin. Our findings provide novel insights into the pathogenesis of IDLE and other types of LE, which may direct more accurate diagnosis and novel therapeutic strategies.


Subject(s)
Autoantibodies , Lupus Erythematosus, Discoid , Lupus Erythematosus, Systemic , Skin , Humans , Lupus Erythematosus, Discoid/immunology , Lupus Erythematosus, Discoid/pathology , Female , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/diagnosis , Male , Autoantibodies/immunology , Autoantibodies/blood , Skin/pathology , Skin/immunology , Skin/metabolism , Adult , Middle Aged , Alleles , HLA Antigens/genetics , HLA Antigens/immunology , Young Adult , Multiomics
17.
Allergy Asthma Proc ; 45(5): 340-346, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39294914

ABSTRACT

The primary immunodeficiency diseases are often accompanied by autoimmunity, autoinflammatory, or aberrant lymphoproliferation. The paradoxical nature of this association can be explained by the multiple cells and molecules involved in immune networks that interact with each other in synergistic, redundant, antagonistic, and parallel arrangements. Because progressively more immunodeficiencies are found to have a genetic etiology, in many cases, a monogenic pathology, an understanding of why immunodeficiency is really an immune dysfunction becomes evident. Understanding the role of specific genes allows us to better understand the complete nature of the inborn error of immunity (IEI); the latter is a term generally used when a clear genetic etiology can be discerned. Autoimmune cytopenias, inflammatory bowel disease, autoimmune thyroiditis, and autoimmune liver diseases as well as lymphomas and cancers frequently accompany primary immunodeficiencies, and it is important that the practitioner be aware of this association and to expect that this is more common than not. The treatment of autoimmune or immunodysregulation in primary immunodeficiencies often involves further immunosuppression, which places the patient at even greater risk of infection. Mitigating measures to prevent such an infection should be considered as part of the treatment regimen. Treatment of immunodysregulation should be mechanism based, as much as we understand the pathways that lead to the dysfunction. Focusing on abnormalities in specific cells or molecules, e.g., cytokines, will become increasingly used to provide a targeted approach to therapy, a prelude to the success of personalized medicine in the treatment of IEIs.


Subject(s)
Immunologic Deficiency Syndromes , Humans , Immunologic Deficiency Syndromes/immunology , Immunologic Deficiency Syndromes/genetics , Autoimmunity , Autoimmune Diseases/immunology , Autoimmune Diseases/genetics , Animals
18.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Article in English | MEDLINE | ID: mdl-33622793

ABSTRACT

Reactive oxygen species (ROS) like hydrogen peroxide (H2O2) are transient species that have broad actions in signaling and stress, but spatioanatomical understanding of their biology remains insufficient. Here, we report a tandem activity-based sensing and labeling strategy for H2O2 imaging that enables capture and permanent recording of localized H2O2 fluxes. Peroxy Green-1 Fluoromethyl (PG1-FM) is a diffusible small-molecule probe that senses H2O2 by a boronate oxidation reaction to trigger dual release and covalent labeling of a fluorescent product, thus preserving spatial information on local H2O2 changes. This unique reagent enables visualization of transcellular redox signaling in a microglia-neuron coculture cell model, where selective activation of microglia for ROS production increases H2O2 in nearby neurons. In addition to identifying ROS-mediated cell-to-cell communication, this work provides a starting point for the design of chemical probes that can achieve high spatial fidelity by combining activity-based sensing and labeling strategies.


Subject(s)
Fluorescent Dyes/metabolism , Hydrogen Peroxide/metabolism , Microglia/metabolism , Molecular Probes/metabolism , Neurons/metabolism , Signal Transduction/physiology , Animals , Boronic Acids/chemistry , Cell Communication , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Coculture Techniques , Embryo, Mammalian , Fluorescent Dyes/chemical synthesis , HeLa Cells , Humans , Mice , Microglia/cytology , Microglia/drug effects , Molecular Probes/chemical synthesis , Neurons/cytology , Neurons/drug effects , Oxidation-Reduction , Paraquat/pharmacology , RAW 264.7 Cells , Staining and Labeling/methods
19.
Int J Mol Sci ; 25(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38928445

ABSTRACT

Glioblastoma is the most common and lethal central nervous system malignancy with a median survival after progression of only 6-9 months. Major biochemical mechanisms implicated in glioblastoma recurrence include aberrant molecular pathways, a recurrence-inducing tumor microenvironment, and epigenetic modifications. Contemporary standard-of-care (surgery, radiation, chemotherapy, and tumor treating fields) helps to control the primary tumor but rarely prevents relapse. Cytoreductive treatment such as surgery has shown benefits in recurrent glioblastoma; however, its use remains controversial. Several innovative treatments are emerging for recurrent glioblastoma, including checkpoint inhibitors, chimeric antigen receptor T cell therapy, oncolytic virotherapy, nanoparticle delivery, laser interstitial thermal therapy, and photodynamic therapy. This review seeks to provide readers with an overview of (1) recent discoveries in the molecular basis of recurrence; (2) the role of surgery in treating recurrence; and (3) novel treatment paradigms emerging for recurrent glioblastoma.


Subject(s)
Brain Neoplasms , Glioblastoma , Neoplasm Recurrence, Local , Glioblastoma/therapy , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Neoplasm Recurrence, Local/therapy , Brain Neoplasms/therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Tumor Microenvironment , Oncolytic Virotherapy/methods , Animals
20.
Angew Chem Int Ed Engl ; : e202408745, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264815

ABSTRACT

Organoboron compounds are widely utilized in organic synthesis for their diverse reactivity, modular preparation, and stability compared to other classes of organometallic reagents. While organoboron species are commonly employed as nucleophiles in cross-coupling reactions, their potential as racemic building blocks in enantioconvergent transformations remains largely untapped. Herein, we demonstrate the direct utilization of alkylboronic pinacol esters in intermolecular enantioconvergent transformations. Specifically, this work describes the development and mechanistic study of an enantioconvergent deborylative cyanation enabled by Cu catalysis. This method imparts a high degree of enantioselectivity and tolerates a wide range of common functional groups and heterocycles. The reaction is proposed to proceed through a radical-relay mechanism. Aniline-assisted homolysis of the carbon-boron bond results in prochiral alkyl radicals that are functionalized by in situ generated Cu(II)(CN)2 species in an enantioselective fashion. The Cu(II)(CN)2 intermediate was characterized by electron paramagnetic resonance (EPR) spectroscopy, and its electronic structure was probed using density functional theory (DFT) calculations. Computational studies were carried out to corroborate the proposed radical-relay mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL