Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Environ Res ; 200: 111464, 2021 09.
Article in English | MEDLINE | ID: mdl-34116020

ABSTRACT

Atmospheric aerosols can change vegetation photosynthesis through the effects of aerosols on radiation, which will affect the peak carbon dioxide emissions and carbon neutrality at global scales. In this study, we quantify the aerosol-induced direct radiation forcing (ADRF) in China from 2001 to 2014 based on the radiation flux simulation used by the Fu-Liou radiation transfer model under with-aerosols and no-aerosols scenarios. Using the radiation simulation results, we modify the atmospheric forcing datasets to drive Community Land Model 4.5 (CLM4.5) to gain the changes in carbon fluxes in China caused by ADRF. The results show that these two models are accurate in estimating radiation (R2 = 0.78-0.88) and carbon fluxes (R2 = 0.73-0.75) in China. High levels of ADRFs were captured in China, especially with increasing diffuse fraction, resulting in the diffusing fertilization effect occurring in most areas of China. The ADRF can increase cumulative gross primary productivity (GPP) and total ecosystem respiration (ER) by 3.20 gC m-2 and 5.13 gC m-2 per year, respectively. From 2001 to 2014, the diffusing fertilization effects experienced trends of increasing first and then decreasing. However, ADRFs in some regions of China show negative effects on carbon fluxes due to vulnerable vegetation functional types and high aerosol loading. The ADRF will also enable soil temperature decreases and volumetric soil water increases, which is closely related to changes in carbon fluxes. Meanwhile, due to changes in soil water and heat conditions, N2O and CH4 production will also be disturbed, and ADRF increases the global warming potential (GWP) for both greenhouse gases. This phenomenon indicated that atmospheric aerosol pollution control is far-reaching significance for peaking carbon dioxide emissions before 2030.


Subject(s)
Ecosystem , Methane , Aerosols , Carbon Cycle , Carbon Dioxide/analysis , China , Methane/analysis , Nitrous Oxide , Soil
2.
Environ Pollut ; 336: 122334, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37567405

ABSTRACT

In recent years, the problem of surface ozone pollution in China has been of great concern. According to observation data from monitoring stations, the concentration of near-surface ozone (O3) in China has gradually increased in recent years, and ozone concentration often exceeds the contaminant limit standard, especially in the Beijing-Tianjin-Hebei (BTH) region. High O3 concentration pollution will adversely affect crop growth, which can cause crop yield losses. Therefore, it is urgent to recognize the situation of ozone pollution in the BTH region and quantitatively evaluate the crop yield losses caused by ozone pollution to develop more effective pollution prevention and control policies. However, the monitoring of ozone concentration in China started relatively late compared with some developed countries, and currently, long-time series data covering the BTH region cannot be obtained, which makes it difficult to evaluate the impact of ozone on crop yield. Therefore, a new method (WRFC-XGB) was proposed in this study to establish a high-precision near-surface O3 concentration dataset covering the whole BTH region from 2014 to 2019 by integrating the Weather Research and Forecasting with Chemistry (WRF-Chem) model with the extreme gradient boosting (XGBoost) machine learning algorithm. Through verification with ground observation station data, the results of WRFC-XGB are satisfactory, and R2 can reach 0.78-0.91. Compared with other algorithms, the accuracy of the near-surface ozone concentration dataset is greatly improved, which can be used to estimate the impact of surface ozone on crop yield. Based on this dataset, the yield loss of winter wheat, rice, and maize caused by O3 pollution was estimated by using the response equation of the relative yield and ozone dose index. The results showed that the total yield losses of winter wheat, rice and maize from 2014 to 2019 were 2659.21 million tons, 49.23 million tons and 1721.56 million tons due to ozone pollution in the BTH region, respectively, and the highest relative yield loss of crops caused by O3 pollution could be 29.37% during 2014-2019, which indicated that the impact of ozone pollution on crop yield cannot be ignored, and effective measures need to be developed to control ozone pollution, prevent crop production loss, and ensure people's food security.

3.
Sci Total Environ ; 768: 144198, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33736297

ABSTRACT

In-situ field observations of vertical aerosol profiles for one month in complex terrain (Lushan Mountain, China) were carried out using a cable car, which resolved detailed vertical distributions of mountain aerosols with low-cost operation. Cable-car observations were conducted during the early morning and late afternoon, when mountain and valley winds dominated, respectively. The diurnal aerosol variations at the top and foot of Lushan Mountain were analyzed based on environmental and meteorological stations. The observations indicated that the mountain-valley breezes notably impacted the mountain-area aerosol distribution under weak weather conditions. More uniform aerosol profiles for the afternoon than the morning, with their decreasing rates of PM2.5 (particles with diameters less than 2.5 µm) were 1.64 and 2.28 µg m-3/100 m, respectively. The PM2.5/PM10 ratio at the mountain top increased from 0.69 to 0.81, and that at the mountain base decreased from 0.75 to 0.70 from morning to afternoon. The PM2.5 concentration decreased in and around Lushan Mountain from daytime to nighttime, with the impacted diameter of the 300-m topography line being smaller than ~5 km, while the concentration increased in Jiujiang City. The relative decreasing rate of PM2.5 was higher at the mountain top site (~20%) than at the base site (~2%) from daytime to nighttime. Moreover, uniform aerosol profiles could have been caused by regional transport through a relatively strong low-level synoptic flow (~5 m s-1) and the mountain's dynamic lifting effect.

4.
Sci Total Environ ; 741: 140324, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32603940

ABSTRACT

Several air pollution episodes occurred in China in the past decade, and high levels of aerosols load also caused the changes of radiation, which could further influence the gross primary productivity (GPP) in the terrestrial ecosystem. This paper focuses on the spatiotemporal variations and relationship of aerosol-radiation-GPP in China during a heavy pollution period (2001-2014). For this purpose, the Fu-Liou radiation transfer mechanism model was used to estimate total radiation (TR) and diffuse radiation (DIFR) at the spatial resolution of 1° × 1° based on the satellite aerosol optical depth (AOD) and other auxiliary data. This model shows excellent performance with an R2 of 0.88 and 0.79 for TR and DIFR, respectively. A significant increasing trend (0.23 W m-2 year-1) in TR was found in China in this phase, and it was mainly attributed to DIFR. Furthermore, a scenario without aerosols (AOD = 0) was simulated as a comparison to quantify the aerosol radiative forcing, which indicated that aerosols play a catalytic role in DIFR, increasing it by approximately 19.55%. Despite all this, aerosols have weakened the brightening of China due to the negative forcing on direct radiation. Meanwhile, 0.65-4.20 kgC m-2 year-1 increase of GPP was also captured in seven regions of China during this phase.However, the significant negative response of GPP to aerosol was found in most ecosystems in the growing season of vegetation, and the highest correlation of -0.76 (p < .01) existed in the central China forest regions. It suggests although aerosol causes a diffuse fertilization effect, GPP is still lost due to high levels of aerosol load in most areas of China during growing season of vegetation. This paper aims to determine the relationship among the aerosol-radiation-ecosystem productivity in different regions of China, which could provide a reference for the divisional strategy formulation and classification management in different ecosystems.

SELECTION OF CITATIONS
SEARCH DETAIL