Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Opt Lett ; 43(22): 5599-5602, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30439905

ABSTRACT

We demonstrate a 266 nm ultraviolet (UV) picosecond laser by fourth-harmonic generation of a Nd:YAG laser with a 5.4 mm thick NaSr3Be3B3O9F4 (NSBBF) crystal. A maximum output power exceeding 1 W at 266 nm was obtained (the highest output power being 1.6 W), corresponding to a conversion efficiency of 10.3%. The stability measurements on the NSBBF crystal with a fluctuation of 3.34% at 200 mW within 1 h indicate that it is a promising UV nonlinear optical material for practical applications. In addition, for the first time, to the best of our knowledge, we measured the effective nonlinear coefficient of NSBBF crystal at 266 nm and compared it with that of ß-BaB2O4 crystal.

2.
Opt Lett ; 43(11): 2563-2566, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29856430

ABSTRACT

We report a high-energy single-frequency deep-ultraviolet (DUV) solid-state laser at 167.079 nm by the eighth-harmonic generation of a diode-pumped Nd:LGGG laser. A maximum DUV laser output energy of 1.5 µJ at a 5 Hz repetition rate with a 200 µs pulse duration is achieved. The central wavelength of the DUV laser is located at 167.079 nm and can be finely tuned from 167.075 to 167.083 nm. The linewidth is estimated to be 0.025 pm. To the best of our knowledge, this is the first Letter reporting a high-energy single-frequency solid-state DUV laser below 170 nm. The successful demonstration of the high-energy single-frequency DUV laser source with the unique wavelength is useful for direct detection of a Al+27 ion via resonance fluorescence in a multi-ion optical clock.

3.
Opt Express ; 25(22): 26500-26507, 2017 Oct 30.
Article in English | MEDLINE | ID: mdl-29092139

ABSTRACT

266 nm laser output in NaSr3Be3B3O9F4 crystal by the fourth harmonic generation process with a picosecond mode-locked Nd-based YAG laser has been done for the first time. When the input pumping energy was 870 µJ at 532 nm, a 280 µJ 266 nm UV laser was obtained and the corresponding conversion efficiency was 35.9%. Further investigations identified that NaSr3Be3B3O9F4 has a large acceptance angle width of 0.47 (mrad • cm), a small walk-off angle of 35.43 mrad and a large deff as 0.62 pm/V for the fourth harmonic generation. These results indicate that NSBBF is applicable for high-power 266 nm laser generation.

4.
Opt Lett ; 40(14): 3268-71, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26176446

ABSTRACT

We demonstrate a ps 167.75-nm vacuum-ultraviolet (VUV) laser by cascaded second-harmonic generation (SHG). The VUV laser is produced by eighth-harmonic generation (EHG) of a mode-locked ps 1342-nm Nd:YVO4 amplifier through three stages cascaded SHG with two LiB3O5 crystals and one KBe2BO3F2 crystal, successively. The 167.75-nm laser provides up to 65-µW output power, and the corresponding photon flux and photon flux density are 5.5×10(13) s(-1) and 1.6×10(18) s(-1)·cm(-2), respectively.

5.
Opt Lett ; 38(19): 3903-5, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-24081084

ABSTRACT

A high efficiency and high peak power picosecond (ps) mid-infrared optical parametric amplifier with a new nonlinear crystal BaGa(4)Se(7) pumped by a 30 ps 1064 nm Nd:YAG laser is demonstrated for the first time. The maximum photon conversion efficiency of 56% from 1064 nm to 3.9 µm idler has been achieved at the pump energy of ~1.8 mJ. A maximum idler output of 830 µJ at 3.9 µm with peak power of ~27 MW was obtained at pump energy of ~9.1 mJ. Moreover, a 3-5 µm idler tuning range was demonstrated, with output energies of ~300 µJ at 5 µm and up to 1 mJ at 3 µm at ~8.2 mJ pump energy.

6.
Appl Opt ; 48(21): 4118-23, 2009 Jul 20.
Article in English | MEDLINE | ID: mdl-19623225

ABSTRACT

We have successfully grown a new nonlinear optical crystal, RbBe2BO3F2 (RBBF), which belongs to the group of borate-based nonlinear optical crystals. Its refractive indices in the visible spectral region and type I phase-matching angles from the deep ultraviolet to the near infrared have been determined. Based on the measured refractive indices and phase-matching angles, the Sellmeier equations of RBBF have also been derived.

SELECTION OF CITATIONS
SEARCH DETAIL